RADIATION RESISTANT FUNGI




“Some fungi can use a molecule called melanin, a pigment also found in human skin, to harvest the energy from radiation and use it for growth”

RADIOTROPHIC FUNGI
https://www.space.com/11142-chernobyl-radiation-space-crops.html
https://www.astrobio.net/extreme-life/mutant-microbes-test-radiation-resistance/
https://serc.carleton.edu/microbelife/extreme/radiation/index.html
https://microbewiki.kenyon.edu/index.php/Radiotrophic_Fungi

“Discovery of radiotrophic fungi came from the observation of ‘black molds’ growing in and around the Chernobyl Nuclear Power Plant in Ukraine [5]. Specifically, fungal species that were later distinguished as melanin-containing were observed to have colonized the walls of the damaged reactor number 4 at Chernobyl [1]. Similarly, fungal species were found in the damaged reactor’s cooling pool water, which had circulated through the nuclear reactor core for cooling purposes and was largely radioactive [1].

Radiotrophic fungi have been observed to inhabit some remarkable environments on the planet where high levels of radiation naturally occur, including the Arctic and Antarctic regions, as well as high altitude terrains [2]. Interestingly, orbiting spacecrafts in outer space are another environment where radiotrophic fungi are found [1]. They are able to grow extensively despite the high levels of ionizing radiation present beyond the protective shield of the Earth’s atmosphere, as seen in the fact that the Russian orbital station, Mir, must be continually cleaned due to accumulation of fungal growth [1].”

FUNGAL BIOREMEDIATION of RADIOACTIVE WASTE SITES
https://sciencewriter.org/dark-power/
https://www.zerohedge.com/news/2018-02-01/one-typhoon-away-full-breach-us-nuke-test-dome-leaking-fatal-radiation-pacific
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02528/full#h1
https://www.popsci.com/microscopic-fungus-cold-war-nuclear-waste
A microscopic fungus thrives amidst acid, heavy metals and radiation
by Kate Baggaley  /  January 29, 2018

“During the Cold War, the United States produced a truly mind-boggling amount of radioactive waste. We failed to properly dispose of much of that sludge, and it’s been leaking from underground storage tanks since the 1950s. Over the years it has contaminated more than 2 billion cubic feet worth of soil and nearly 800 billion gallons of groundwater at low levels.

Cleaning this mess up will be a daunting task, but scientists have just enlisted a new ally. It turns out our best bet for containing radioactive waste might be to stick yeast on it. Many of these tiny fungi can survive extremely radioactive and acidic conditions, scientists reported January 8 in the journal Frontiers in Microbiology. What’s more, they form gunk called biofilms that could potentially trap the waste. “The potential for yeast is enormous,” says coauthor Michael Daly, a pathology professor at the Uniformed Services University of the Health Sciences (USU) in Bethesda, Maryland. “You have a huge group of organisms that are already there, naturally in the environment, that could be harvested for this sort of work.”


“Summer 1943, Hanford became the Manhattan Project’s newest atomic boomtown”

The scale of the problem these yeasts would tackle is almost indescribably vast, Daly says. Radioactive waste from the 46,000 nuclear weapons built between 1945 and 1986 is stored in 120 sites around the country. The largest is the sprawling Hanford Site in southeastern Washington, where the first atomic bombs were assembled during the Manhattan Project.

It houses more than 50 million gallons of waste. Leakage at Hanford has contaminated enough soil and sediments to bury 10,000 football fields a yard deep, and polluted enough groundwater to keep Niagara Falls flowing for a month. It’s mostly contained within the soils and aquifers at Hanford, Daly says, although small amounts are slowly seeping into the nearby Columbia River.

The Cold War waste is an assortment of radioactive versions of elements such as strontium, uranium, and plutonium: acids once used to extract metal out of uranium ores, heavy metals like mercury and lead, and toxic chemicals. Scientists have long hoped to find microbes tough enough capture it, a technique known as bioremediation. Bacteria and other microorganisms are relatively cheap to grow. Certain microbes can catch radioactive waste so rain doesn’t wash it away, feed on toxic chemicals, or transform heavy metals into less dangerous states.

For decades, Daly and his colleagues have tried to harness a microbe so tough its nickname is Conan the Bacterium. This microbe, more properly called Deinococcus radiodurans, is one of the most radiation-resistant life forms we know of (it can also withstand drought, lack of food, extreme temperatures, and the vacuum of space). Over time, scientists managed to genetically engineer this bacterium to have the ability to transform toxic chemicals and heavy metals into less deadly forms. But they couldn’t get it to thrive in acidic conditions. “At the end of the day the thing wouldn’t grow at lemon juice pH ranges,” Daly says.


“Genome analysis of R. taiwanensis MD1149”

He and his colleagues decided to search for better candidates in nature, and sampled microbes from deserts, mines, rivers, and hot springs around the world. The most promising was a red-hued fungus from an abandoned acid mine drainage facility in Maryland. The yeast, a species called Rhodotorula taiwanensis, surprised researchers with its endurance in the face of acid and chronic radiation.


“Pairwise genome alignments of R. taiwanensis MD1149 and related species”

On top of this, it tolerates heavy metals and even forms biofilms under these trying circumstances, a trick Conan never mastered. The researchers tested a total of 27 yeasts to see if they could handle exposure to noxious substances like mercury chloride. “These are really toxic heavy metals,” Daly says. “If we got a little bit in us they would kill us, and these microbes are flourishing in these mixtures of heavy metals, radiation, and [acid].”

“Ranking of representative fungi by the survival index

Most bacteria can’t tolerate acidity or radiation, but both skills turn out to be very common among yeasts. “They are masters of the low-pH world,” Daly says. On the other hand, fungi tend to be more sensitive to heat than bacteria. R. taiwanensis prefers to grow around room temperature, but the decaying nuclear wastes can heat the soil around the steel storage tanks to around 120 degrees Fahrenheit. This wouldn’t necessarily thwart the microbes, though. Placed a small distance away from the storage tanks, the yeasts could capture leaking waste without succumbing to the warmth.

Ideally, different strains of yeasts and bacteria could team up, says Rok Tkavc, an adjunct pathology professor and staff scientist at the Henry Jackson Foundation for the Advancement of Military Medicine at USU. He recently reported that when Deinococcus radiodurans mixes with other bacteria it seems to endow its neighbors with radiation resistance. These cocktails could potentially be used to combat radioactive waste released by nuclear meltdowns as well as that left over from the Cold War.

For the Hanford Site, a successful cleanup would mean keeping radioactive elements out of the Columbia River for the thousands of years it takes them to decay to less dangerous forms. “We cannot get rid of the radiation; no one can do that,” Daly says. “The only thing we can conceivably do to protect ourselves is to contain it, to keep it from coming out.”

PREVIOUSLY on #SPECTRE

UNNATURAL SELECTION
https://spectrevision.net/2013/05/24/unnatural-selection/
RADIOTROPHIC FUNGUS FOUND at CHERNOBYL
https://spectrevision.net/2014/07/18/electric-bacteria/

DIY CROWDSOURCED RADIATION TESTING
https://spectrevision.net/2011/08/11/diy-crowdsourced-radiation-testing/
RECYCLING NUCLEAR WASTE
https://spectrevision.net/2017/03/15/diamond-batteries/

Leave a Reply