A Navy fuel ship replenishes the the U.S.S. Mount Whitney on the Mediterranean Sea in October 2013. (U.S. Navy photo by Mass Communication Specialist 1st Class Collin Turner/Released)
A Navy fuel ship replenishes the the U.S.S. Mount Whitney (right) on the Mediterranean Sea in October 2013

U.S. Navy Wants to Fuel Ships Using Seawater
by Carl Engelking  / April 8, 2014

The U.S. Navy’s Arleigh Burke-class destroyer typically burns 1,000 gallons of petroleum fuel an hour. Most of the Navy’s fleet shares the same ravenous appetite for fuel, and refueling these massive warships can interrupt missions and present challenges in rough weather. However, researchers at the U.S. Naval Research Laboratory have now proven that it’s possible to power engines instead with a cheap, convenient supply of fuel: seawater. Scientists have spent nearly a decade laboring to turn the ocean into fuel. The breakthrough, demonstrated in a proof-of-concept test, was made possible by a specialized catalytic converter that transforms carbon dioxide and hydrogen from seawater into a liquid hydrocarbon fuel.

The development of a liquid hydrocarbon fuel is being hailed as a game changer. If Navy ships create their own fuel they can remain operational 100 percent of the time, rather than conducting frequent fuel-ups with tankers while at sea, which can be tricky in rough weather. A catalytic converter extracts carbon dioxide and hydrogen from water and converts the gases into liquid hydrocarbons at a 92 percent efficiency rate, and the resulting fuel can be used in ships’ existing engines. The feasibility of the approach was demonstrated in the test on April 2, when researchers flew a model airplane using the fuel from seawater. “This is the first time technology of this nature has been demonstrated with the potential for transition, from the laboratory, to full-scale commercial implementation,” said Navy research chemist Heather Willauer in a news release Monday. The next major step is to build the infrastructure to convert seawater into fuel on a massive scale. The Navy would first start mass-producing fuel in land-based operations, which would be the first step toward installing fuel generation systems on ships. The Navy predicts the seawater fuel would cost about $3-6 per gallon, and could be commercially viable within a decade.


“Navy researchers at the U.S. Naval Research Laboratory (NRL), Materials Science and Technology Division, demonstrated proof-of-concept of novel NRL technologies developed for the recovery of carbon dioxide (CO2) and hydrogen (H2) from seawater and conversion to a liquid hydrocarbon fuel. Fueled by a liquid hydrocarbon – a component of NRL’s novel gas-to-liquid (GTL) process that uses CO2 and H2 as feedstock – the research team demonstrated sustained flight of a radio-controlled (RC) P-51 replica of the legendary Red Tail Squadron, powered by an off-the-shelf (OTS) and unmodified two-stroke internal combustion engine. Using an innovative and proprietary NRL electrolytic cation exchange module (E-CEM), both dissolved and bound CO2 are removed from seawater at 92 percent efficiency by re-equilibrating carbonate and bicarbonate to CO2 and simultaneously producing H2. The gases are then converted to liquid hydrocarbons by a metal catalyst in a reactor system. “In close collaboration with the Office of Naval Research P38 Naval Reserve program, NRL has developed a game-changing technology for extracting, simultaneously, CO2 and H2 from seawater,” said Dr. Heather Willauer, NRL research chemist. “This is the first time technology of this nature has been demonstrated with the potential for transition, from the laboratory, to full-scale commercial implementation.”

CO2 in the air and in seawater is an abundant carbon resource, but the concentration in the ocean (100 milligrams per liter [mg/L]) is about 140 times greater than that in air, and 1/3 the concentration of CO2 from a stack gas (296 mg/L). Two to three percent of the CO2 in seawater is dissolved CO2 gas in the form of carbonic acid, one percent is carbonate, and the remaining 96 to 97 percent is bound in bicarbonate. NRL has made significant advances in the development of a gas-to-liquids (GTL) synthesis process to convert CO2 and H2 from seawater to a fuel-like fraction of C9-C16 molecules. In the first patented step, an iron-based catalyst has been developed that can achieve CO2 conversion levels up to 60 percent and decrease unwanted methane production in favor of longer-chain unsaturated hydrocarbons (olefins). These value-added hydrocarbons from this process serve as building blocks for the production of industrial chemicals and designer fuels. In the second step these olefins can be converted to compounds of a higher molecular using controlled polymerization. The resulting liquid contains hydrocarbon molecules in the carbon range, C9-C16, suitable for use a possible renewable replacement for petroleum based jet fuel.

The predicted cost of jet fuel using these technologies is in the range of $3-$6 per gallon, and with sufficient funding and partnerships, this approach could be commercially viable within the next seven to ten years. Pursuing remote land-based options would be the first step towards a future sea-based solution. The minimum modular carbon capture and fuel synthesis unit is envisioned to be scaled-up by the addition individual E-CEM modules and reactor tubes to meet fuel demands. NRL operates a lab-scale fixed-bed catalytic reactor system and the outputs of this prototype unit have confirmed the presence of the required C9-C16 molecules in the liquid. This lab-scale system is the first step towards transitioning the NRL technology into commercial modular reactor units that may be scaled-up by increasing the length and number of reactors. The process efficiencies and the capability to simultaneously produce large quantities of H2, and process the seawater without the need for additional chemicals or pollutants, has made these technologies far superior to previously developed and tested membrane and ion exchange technologies for recovery of CO2 from seawater or air.”

artist's conception of a pilot plant off China's coast

Ocean Thermal Power Will Debut off China’s Coast
by Daniel Cusick and ClimateWire / May 1, 2013

Forty years of research and development by Lockheed Martin into harnessing energy from steep differentials in ocean temperatures will see its first commercial deployment in China. There, a resort developer has partnered with the U.S. defense and aerospace giant to build a 10-megawatt power plant using ocean thermal energy conversion (OTEC) technology. A recently signed agreement between Lockheed Martin, of Bethesda, Md., and the Beijing-based Reignwood Group should lead to the completion of the alternative energy plant by 2017 in waters off southern China’s Hainan Island. The platform-based power plant will be the largest OTEC application developed to date, according to Lockheed, supplying 100 percent of the power needed for the resort, which will be marketed as a low-carbon real estate development.

The technology involves heating warm surface water to produce steam that drives a turbine generator. Then colder water is pumped from 800 to 1,000 meters below the ocean surface to condense the steam back into liquid form. Dan Heller, Lockheed Martin’s vice president of new ventures for Mission Systems and Training, said the relationship with Reignwood, a diversified firm with holdings in the energy, minerals, aviation and resort business, solidified as Lockheed engineers went searching for suitable locations to build a pilot-scale OTEC facility. For several years, Lockheed has tested the technology at a site in Hawaii in partnership with Makai Ocean Engineering, the Energy Department and the U.S. Navy. But several obstacles, including high upfront costs and securing a partner for a long-term project, kept such efforts from growing into a scaled power plant, according to sources familiar with the testing program.

Duke Hartman, a spokesman for Makai Ocean Engineering, said that his firm continues to work on OTEC applications in partnership with the Navy, and that the Pentagon has retained its goal of developing a 5-10 MW pilot plant off the island of Oahu and eventually a commercial plant of up to 100 MW. “The Navy wants a thriving OTEC industry because they would benefit from it,” Hartman said. Imagine being able to tow a semisubmersible power plant to almost any corner of the world, he added. Hartman said Makai is supportive of Lockheed Martin’s work in China and hopes to be able to participate in the project in some way. “The biggest obstacle to OTEC is economies of scale,” he said. “You get a lot more bang for your buck if you go bigger.” He estimated that a 100 MW OTEC plant would cost in excess of $1 billion to build using current technologies, and that the cost would not be significantly lower for a scaled-down plant. Lockheed Martin’s Heller said that Reignwood will bear the full cost of the 10 MW project in south China and that the two firms will continue to seek opportunities to expand OTEC’s foothold in Asia.

U.S. sites with potential
In the United States, Heller noted that several sites, including Hawaii and Florida, have demonstrated potential for commercial OTEC plants, and that Lockheed continues to work to identify partners for OTEC projects at home. But, he said, when the company began surveying locations for a commercial plant, “China was a very logical place to start” due to its need for clean energy alternatives as well as its location near some of the world’s most ideal oceanographic conditions. Reignwood, he said, was recommended as a development partner because of its commitment to use clean energy to power its resort communities. Heller said Lockheed Martin will use the Reignwood project to help prove OTEC’s viability as an energy resource with the long-term goal of “building an industry around OTEC,” which has applications beyond electricity generation such as seawater desalination and hydrogen production. And unlike other renewable energy sources, OTEC can be relied on for 24-hour, base-load power. Lockheed has a team of about 20 engineers working on its OTEC program, and that number is likely to go up as the Reignwood project moves closer to the construction phase. “Even before the announcement, we’ve had a tremendous response when it became evident that we were going to make this a reality,” Heller said.

A prototype osmotic power plant in Tofte, Norway.
The world’s first osmotic energy plant has been operating for more than three years in Tofte, Norway, on the Oslofjord inlet. Statkraft is seeking to ramp up its efforts to produce renewable energy from the physical interaction of saltwater and freshwater.

Salt Power: Norway Project Tries Osmotic Energy
by Dean Clark  /  January 7, 2013

Tofte, an hour south of Oslo on the inlet known as Oslofjord, is home to a waterfront cellulose factory and not much else. But for more than three years, Norwegian energy company Statkraft has been rather quietly testing the technology in the world’s first osmotic power plant, in a renovated wing of the town’s factory. With a meager two to four kilowatts of capacity, barely enough power to foam a cappuccino, the plant is a decidedly small start. But the Norwegian Center for Renewable Energy (SFFE) pegs the global potential of osmotic power to be about 1,370 terawatt-hours per year, about equivalent to the current electricity consumption of Eastern Europe and Russia combined. So Statkraft is now seeking to ramp up its work, while researchers around the world are joining in the effort to harness a new form of renewable energy from the saltwater that covers more than 70 percent of the Earth’s surface.

Power from Movement
Osmotic power, also known as “salinity gradient” power, relies on a rather basic physical process: diffusion. Salty water molecules tend to move into freshwater nearby. It happens wherever rivers meet the sea, creating energy in the form of heat.  Place a semipermeable barrier between the saltwafter and the freshwater, and the diffusion of molecules through the membrane is osmosis. For decades, reverse osmosis has been used to filter water. Sidney Loeb, the American chemical engineer who is credited with developing a practical reverse osmosis process in the 1950s, later developed a technique for capturing the energy in the rush of saltwater to the freshwater side of a membrane. Statkraft estimates it spent over ten years and more than 100 million kroner (about $12 million USD) in research funds to help develop one of these techniques, pressure retarded osmosis (PRO), in the prototype facility at Tofte. It’s a big investment for a facility that has only enough capacity to operate a coffee machine, but size of output isn’t the key metric for researchers at this point. Statkraft views the Tofte experiment as a lab for learning how to capitalize on osmotic power´s huge potential and strong environmental credentials. Independent experts see the potential. “It´s a very clean process,” said Friso Sikkema, senior specialist in power generation and renewables at DNV Kema, a leading research firm in the field based in the Netherlands.

Osmotic power generation is carbon-free, and Statkraft reports that its plant´s main byproduct is brackish water. Questions remain however, concerning future large-scale operations and their effect on salinity levels or how pretreatment processes might impact local marine life. Bruce Logan, director of the Hydrogen Energy Center and Engineering Energy and Environmental Institute at Penn State University says he is “optimistic osmotic power can play an important role,” but cautioned “there´s not enough work going on in terms of developing inexpensive membranes tailored for the process.” Even though membrane technology is still in its early stages, the force currently generated by the experimental process can be significant. With pressures at the Norwegian test site reaching 12 bar on the seawater side, “it’s like creating an artificial waterfall of 120 meters” (394 feet), according to Statkraft’s head of osmotic power, Stein Erik Skilhagen. In this early-stage experiment, though, the flow of water is more a trickle than a cascade, so power output at Tofte is still small.

Interest in the renewable energy source is growing internationally. NASA has been working on osmotic systems for the treatment of wastewater aboard spacecraft, and is now investigating the PRO method with tertiary treatment, or PRO/TT, with the aim of developing technology that can purify water and create energy at the same time. Hydro-Québec, the largest electricity generator in Canada and the largest producer of hydroelectric power in the world, is partnering with Statkraft on next-stage development of PRO technology. It is looking into the feasibility of osmotic energy along Canada’s long coastline. Japan’s Tokyo Institute of Technology opened its Osmotic Power Research Centre in 2010, the year before a devastating earthquake and tsunami crippled the Fukushima Daiichi nuclear plant and led to a rethinking of the nation’s energy future. Akihiko Tanioka, the researcher leading the osmotic effort, argues that the flow volume of Japan’s rivers contain the potential energy capacity to replace five or six nuclear reactors if osmotic plants were situated where rivers run into the sea.

Natural Battery
Researchers in the Netherlands are working on an alternative to PRO—reverse electrodialysis, or RED. DNV Kema´s Sikkema said the process, essentially, is “creating a natural battery.” In the RED approach, the osmotic energy of mixing fresh and salt water is captured by directing the solution through an alternating series of positively and negatively charged exchange membranes. The resulting chemical potential difference creates a voltage over each membrane and leads to the production of direct electric energy. While less developed than PRO, the RED process may eventually become popular for a lower initial cost structure. “PRO calls for complex machinery, chambers and turbines and generators.  Economy of scale plays a large role.  In our (RED) technology, we produce electricity directly from difference in fresh and saltwater,” said Sikkema.

With all the upsides, why isn’t osmotic power already warming homes around the world? Infrastructure for the process is currently very expensive. Statkraft estimates that a PRO plant that can supply power for 30,000 homes would need to be the size of a sports stadium and require 5 million square meters of membrane. Add to that the challenge of creating intake water clean enough to keep from fouling the membranes, and there are some costly hurdles to overcome. But proponents like Skilhagen point out that the development of osmotic power will follow a curve like that of other green energy sources. “You have to compare it with other renewables: wind, hydro and solar, for example. There is a high level of investment in the beginning, but the technology will mature and become more attractive in future. Osmotic’s environmental benefits will make it a useful part of the future low-carbon energy mix if costs can be brought in line with other renewables.” Penn State’s Logan says development of inexpensive membrane technology will be key to establishing a realistic price point for osmotic energy. The next step for Statkraft is to ramp up from the prototype at Tofte to a larger pilot plant that will generate more energy and be connected to the grid. The company has applied for permits to construct a pilot on the west coast of Norway.

Continuous Sustainable Power Supply: Benthic Microbial Fuel Cell

Research chemist and branch head at the Center for Bio/Molecular Science and Engineering at the U.S. Naval Research Laboratory (NRL), Dr. Lenny Tender, speaks with Department of Defense Armed with Science on cutting-edge research to address the growing concerns of carbon-based energy consumption and the reduction in carbon dioxide (CO2) emissions. Co-inventor of the microbial fuel cell (MFC), which persistently generates electrical power in marine environments, Tender is an internationally recognized leader in MFC research that spans implications in alternative, carbon-neutral energy generation that address pressing needs of the Navy, Department of Defense (DoD), and the nation.

To get long-term data on the state of the oceans is very difficult because oceanographic sensors are constantly running out of battery power. What the benthic fuel cell does is generate electricity indefinitely using microorganisms naturally residing on the sea floor. “At the bottom of the marine environment we have sediment, the mud at the bottom of a harbor, river, lake, or the ocean, which has quite a bit of fuel in it, organic matter which microbes draw upon to satisfy their energy needs,” Tender says. “You can think of anything that has ever lived in the marine environment, phytoplankton, sea creatures, etc. When they die, they settle on the sea floor and, like leaves on the lawn, start decomposing—and this represents a pretty potent fuel source for marine microorganisms to produce energy in the form of electricity.”

There are thousands of oceanographic instruments that are deployed every year by the Navy. Naval fleets around the world, science organizations, and academic researchers studying climate get a relatively short picture of what is occurring over time. This is due to the limited lifetime of batteries typically used to power oceanographic instruments. In comparison, the benthic MFC can operate indefinitely, owing to the immense reservoir of fuel and oxidants that it draws upon in the marine environment. Tender’s research in benthic MFC development, therefore, has significant implications to future Navy capabilities with respect to persistent in-water Intelligence, Surveillance, and Reconnaissance (ISR) operations for warfighters in riverine, estuarine, and close-in littoral environments.

With funding from the Bill and Melinda Gates Foundation, Tender has expanded his MFC research to include wastewater treatment. Whereas conventional treatment processes consume significant power—an issue that confronts the DoD and developing countries alike—MFCs may enable power generation from wastewater treatment. As Tender describes, approximately five percent of U.S. electricity consumption goes to treating wastewater. The inherent energy represented by the organic matter, which is the fuel in the wastewater, can instead be used to generate electricity. Expanding on this idea, Tender says, this provides an opportunity to flip that equation upside down and to actually think of wastewater treatment plants as power stations. “The funding we have with the Gates Foundation is to help Third World communities. In other areas of the world, most don’t treat wastewater, so people can get very sick. If we can come in and say ‘well, not only can we treat the wastewater, but knock down the prevalence of disease and provide you with electricity,’ that’s the interest of the Gates Foundation that holds a similar interest to that of the DoD.” Tender describes other applications stemming from this research that he says will go way beyond just generating energy on the sea floor. “One of the things my team and I are pursuing now, that I’m very excited about, is the idea of using microorganisms as catalysts on electrodes to generate fuel from carbon dioxide,” Tender said. “This is an opportunity to start drawing on the carbon dioxide that’s already in the atmosphere and generating a fuel, basically running the combustion process in reverse.”

In the case of his microbial fuel cell, microbes oxidize organic matter residing in marine sediment or wastewater and transfer the acquired electrons to the anode. This results in the generation of electrical power, but also carbon dioxide. By running the process in reverse, it is possible to use microbes to reduce carbon dioxide back into forms of organic matter that can serve as transportation fuels, using electrons donated from cathodes and solar-generated electricity. However, the trick, says Tender, is finding candidate microbes that are very good at accepting electrons from cathodes and reducing carbon dioxide—components that he says his team has already identified. For Tender, the benthic microbial fuel cell has opened up an entire line of research that he believes will have a much higher impact than powering oceanographic sensors on the sea floor.



Fog-harvesting system developed by MIT and Chilean researchers could provide potable water for the world’s driest regions
by David L. Chandler  /  August 30, 2013

In some of this planet’s driest regions, where rainfall is rare or even nonexistent, a few specialized plants and insects have devised ingenious strategies to provide themselves with the water necessary for life: They pull it right out of the air, from fog that drifts in from warm oceans nearby. Now researchers at MIT, working in collaboration with colleagues in Chile, are seeking to mimic that trick on a much larger scale, potentially supplying significant quantities of clean, potable water in places where there are few alternatives. Fog harvesting, as the technique is known, is not a new idea: Systems to make use of this airborne potable water already exist in at least 17 nations. But the new research shows that their efficiency in a mild fog condition can be improved by at least fivefold, making them far more feasible and practical than existing versions. The new findings have just been published online by the journal Langmuir, a publication of the American Chemical Society, in a paper by MIT postdoc Kyoo-Chul Park PhD ’13, MIT alumnus Shreerang Chhatre PhD ’13, graduate student Siddarth Srinivasan, chemical engineering professor Robert Cohen, and mechanical engineering professor Gareth McKinley.

Fog-harvesting systems generally consist of a vertical mesh, sort of like an oversized tennis net. Key to efficient harvesting of the tiny airborne droplets of fog are three basic parameters, the researchers found: the size of the filaments in those nets, the size of the holes between those filaments, and the coating applied to the filaments. Most existing systems turn out to be far from optimal, Park says. Made of woven polyolefin mesh — a kind of plastic that is easily available and inexpensive — they tend to have filaments and holes that are much too large. As a result, they may extract only about 2 percent of the water available in a mild fog condition, whereas the new research shows that a finer mesh could extract 10 percent or more, Park says. Multiple nets deployed one behind another could then extract even more, if so desired. While some of the organisms that harvest fog do so using solid surfaces — such as the carapace of the Namib beetle, native to the Namib desert of southern Africa — permeable mesh structures are much more effective because the wind-blown fog droplets tend to be deflected around solid surfaces, Park says. Thus, a woven mesh structure resembling a window screen turns out to be most effective. With the right chemical coating, fog droplets that form on the screen then slide down to be collected at the bottom and are funneled into buckets or tanks.

A comparison of the current standard fog-harvesting mesh material (top) and the new version designed by the MIT team (bottom), under identical conditions, demonstrates how much more rapidly water accumulates from the improved version.

The researchers found that controlling the size and structure of the mesh and the physical and chemical composition of this coating was essential to increasing the fog-collecting efficiency. Detailed calculations and laboratory tests indicate that the best performance comes from a mesh made of stainless-steel filaments about three or four times the thickness of a human hair, and with a spacing of about twice that between fibers. In addition, the mesh is dip-coated, using a solution that decreases a characteristic called contact-angle hysteresis. This allows small droplets to more easily slide down into the collecting gutter as soon as they form, before the wind blows them off the surface and back into the fog stream. While the systems currently deployed in the coastal mountains at the edge of the Atacama Desert tend to yield a few liters of drinking water per day for each square meter of mesh, the theoretical calculations show that newly designed systems operating in the strong winds and dense fogs that form along the Chilean coast at certain times of the year could yield up to 12 liters per day or more, the researchers say. In collaboration with researchers at the Pontifical Catholic University in Santiago, Chile, the MIT researchers have recently installed a variety of test screens made of different materials on hilltops in a semi-arid region north of Santiago, an area that sees very little rainfall, but which is regularly enshrouded in a strong windblown coastal fog calledcamanchaca rolling in from the Pacific Ocean. The team is currently carrying out a yearlong test to study the durability and water yield of different configurations. Maria Tou ’14, an MIT undergraduate, worked with the team in Chile, helping to install instrumentation that can observe the fluid mechanics associated with the fog droplets as they collect, grow and coalesce on the meshes.

Large mesh structures, of hundreds of square meters each, could be set up relatively inexpensively; once in place, they cost virtually nothing to operate. They consume no energy, needing only an occasional brushing to remove particles of grit and bugs. “The operating cost is essentially zero,” McKinley says, because “nature has already done the hard work of evaporating the water, desalinating it and condensing the droplets. We just have to collect it.” Chilean investigators have estimated that if just 4 percent of the water contained in the fog could be captured, that would be sufficient to meet all of the water needs of that nation’s four northernmost regions, encompassing the entire Atacama Desert area. And with the MIT-designed system, Park points out, 10 percent of the fog moisture in the air passing through the new fog collector system can potentially be captured. Daniel Beysens, director of the Physics and Mechanics of Heterogeneous Media Laboratory at EPSCI in Paris, who was not involved in this research, says, “This is a very important paper for anybody who wants to get water from fog. The authors have performed a thorough theoretical and experimental investigation of the influence on the final water yield of the structure of a fog net. … Their study is a breakthrough in the design of fog collectors.”

Billboard transforms air into clean water in Peru
by Kimberley Mok  /  February 27, 2013

At the intersection of research, education, water conservation and advertising comes this interesting project in Lima, Peru: it’s a billboard that converts the region’s moist air into drinking water. As a collaboration between Lima’s University of Engineering and Technology (UTEC) and the ad agency Mayo DraftFCB to encourage new student applications, the billboard has already produced 9450 litres of clean water for local communities in the last three months. The project takes advantage of the fact that it rarely rains in Lima (it lies in a coastal desert region), yet the atmospheric humidity is also around 98 percent. The moist air is processed through a series of reverse osmosis machines installed inside the billboard, an air filter, condenser and carbon filter, generating 96 litres (25 gallons) of water per day, which is kept in tanks at the top and comes out of a faucet located at the bottom of the billboard. It’s a smart way to show off the school’s engineering program, yet also gives back to communities that are sorely in need of clean water — and gives billboards a more worthier role other than an advertising tool. More over at UTEC and PSFK.



The Vertical Forest / by Britt Hysen

The age of green is upon us. We have reached a point in our human evolution where science, math, and creative genius have discovered a way to suspend a living forest in mid air. The answer to city pollution is now Stefano Boeri’s Bosco Verticale, the world’s first 27-story microclimate apartment towers currently under construction in Milan, Italy. Built to function as city air purifiers, these lush apartments will include over 900 trees, 5,000 bushes, and 11,000 plants throughout the tower balconies. Each perch of life will aid in reducing city noise, moderating atmospheric temperatures, absorbing CO2 emissions, and acting as an energy sustainer for seasonal weather shifts. This model will tremendously increase air quality as living expenses will dramatically decrease. Utilities will be relatively low as each ecosystem is generated through natural light and grey-water irrigation and helps to conserve energy throughout each unit. To take this sustainable design to the next level, Boeri plans to implement BioMilano, a project to revitalize the biological space within the entire city of Milan. His vision is to stop expanding the city into rural environments, and instead fuse urban dwellings with agricultural prosperity.

Milan is one of the most polluted cities in the world with benzene-laced air equivalent to smoking 15 cigarettes a day. As the metropolis continues to grow, more and more agricultural land and natural habitats are being destroyed. With countries across the globe experiencing their industrial revolution, the importance of maintaining a balanced ecosystem becomes increasingly relevant to the survival of our Earthy humanity. On his company website, Boeri reports that BioMilano is for “metropolitan reforestation that contributes to the regeneration of the environment and urban biodiversity without the implication of expanding the city upon the territory.” The transitional state from concrete jungle to urban biospheres will set the precedence for other major metropolitan cities to embrace the same sustainable ideology.

View from the Porta Nuova parkland.  3d image.  The Vertical Forest.  Boeri Studio
view from the Porta Nuova parkland

Boeri states on his site that in order for these changes to occur, a new agreement needs to be made between the city, the natural world, and the agriculture industry. At the core of BioMilano, 60 publicly owned and abandoned farms around the edge of Milan have been zoned for a new kind of farming that will provide work for the community and produce food for local markets. “BioMilan is a political project which aims to increase the number of businesses which, working together in areas linked to agriculture, forestation and renewable energy, can regenerate the urban economy and provide forms of integration and work for thousands of citizens,” Boeri says of the proposed project.  With a suppressed economy and dense population, Milan will be able to reverse their toxic spiral and establish a thriving yet healthy city economy with Bosco Verticale and BioMilano. As Boeri paves the way for urban restitution, the world anxiously watches as his first building is put into effect. The idea of a vertical forest is not only fascinating and timely, but is also quite necessary for our environmental survival and wellbeing. If Boeri’s Bosco Verticale is a success, we might have just saved our world from hitting that fast-approaching iceberg.

The Vertical Forest, green architecture in Milan, of Boeri Studio
by Javier Toro Caviedes / July 16, 2013

In the Via Gaetano Castillia, north of Milan in Italy, are building two residential towers with its verdant facades. The architects of the project dating from 2007 are architects Stefano Boeri, Gianandrea Barreca and Giovanni La Varra, belonging to Boeri Studio. The project was baptized with the name of Il Bosco Verticale (Vertical Forest) because it has an area of trees, shrubs and plants, equivalent to 10,000 m2 . To water these plants thousands of giant planters settled in the terraces, it has projected an irrigation system that filters and reuses sewage and stormwater from the buildings. In addition, the towers have facilities for solar and wind energy.

lifting plants. The Vertical Forest, Boeri Studio {Marco Garofalo}

The dense vegetation of the facades, which in summer will decrease the temperature inside the building and that after the fall of leaves in autumn sunlight collected facades. The aim is to create a microclimate and increase moisture and freshness in the building. Plants absorb CO2 , produce oxygen, filter dust from pollution concern Milanese, and protect against noise. In addition, the CO2 from the construction process will be reduced by the CO2 absorbed by the plants, so the long-term balance will be offset.

view from Via Gaetano Castillia, May 2012 {Google Street View}

The Vertical Forest is promoted by the U.S. company Hines, who began developing Spain Diagonal Mar in Barcelona. The apartments range from 60 m2 apartments to duplex penthouses of 495 m2, with a rapid sale prices. The new urban renewal, near Porta Garibaldi Station, it has been called Porta Nuova, and has other residential buildings and commercial offices.But the Italian crisis has taken its toll at Vertical Forest and a few weeks ago the construction company was in receivership. Hines contractor changed, trusting resume work before the end of summer, and the consequent delay in the completion will be delayed until the spring of 2014.


Caracas’ Deserted Bank Tower turned Skyscraper Slum  /  May 7, 2013

It was built for stockbrokers and bankers in their thousand dollar suits to make million dollar deals, but for nearly two decades it has held the less impressive title of the world’s tallest squat. Welcome to the Centro Financiero Confinanzas, more commonly known as the Torre David (the Tower of David) in Caracas, Venezuela, an unfinished skyscraper which has now been colonised by an ad hoc community of over 700 families. Construction of the 45 story high building began in 1990, under the investment of David Brillembourg. He died just three years later of cancer and following the Venezuelan banking crisis of 1994, the government took ‘control’ in 1994. Except very little ‘government control’ prevails here. Within a few years of abandonment, people with no home, searching for a space to exist began venturing into the skeletal concrete structure.

Their ‘rooms with a view’ lacked walls, working electricity, running water, windows, balcony railings and certainly no elevator, yet the new residents settled in as high as the 30th floor. Chilling stories of small children playing too close to the edge and deadly winds gusting through living quarters were a constant reminder of the risks they were taking.

Little by little however, they began crudely patching up the unfinished work that builders left behind. Found or makeshift materials were hauled up countless unlit stairwells to provide basic services and safety measures. They now have running water that reaches up to the 22nd floor. A village-like community began to flourish behind its sleekly designed shell. Grocery stores on every inhabited floor, hairdressers and even a dentist (unlicensed) operate in the Torre David.

Concrete terraces open to dizzying heights have been walled up and fashioned into balconies dotted with satellite dishes. Community leaders have been chosen to seek legalisation for their unusual vertical settlement despite  the concrete behemoth still being a fundamentally unsafe place to live. Hailed even by some as a near utopic society, Torre David has become an unlikely example of  human resourcefulness and self-sufficiency in the face of a government’s incompetence. Raising awareness for the Torre David and the questions it brings forward about urban space and slum territories, is Urban Think Tank, a project founded by a man who’s last name you might remember from the beginning of the article, Alfredo Brillembourg. A relative of David Brillembourg, the late investor behind the Torre David, has stepped forward to call on architects and developers of the world to see the potential for innovation and experimentation in informal settlements. “It doesn’t look good, but it has the seed of a very interesting dream of how to organize life”, says Alfredo, whose ultimate goal is to see urban architectural design helping to create a more sustainable future.

In 2012, the think tank made a documentary film that premiered and attracted a lot of attention at the Venice Biennale. A book featuring the stunning photography of David Bann and a study of the informal vertical community has also been released this year.

A helipad sits on the roof of the Torre David, where CEO’s leading a gilded lifestyle were supposed to have been dropped off for a day of meetings in their corner office with citywide views. In this skyscraper that was built to be an emblem of Venezuelan entrepreneurial and financial power, 2,500 squatters are now busily creating opportunities for themselves in a micro-economy. Residents claim it’s better than the street and the hillside slums that can be seen in the distance. As much as it’s a symbol of human adaptability however, it is also one of failure– sadly a place that people are calling their home. Still mad at your landlord?



sustainable design, green design, green transportation, bus planter, green roofed bus, bus roots, marco castro cosio, gardening
Fans of the WHO Farm Project and other crazy green bus projects may enjoy Bus Roots, a green roof system designed for buses by Marco Castro Cosio



Electromagnetic Harvester claims to charge batteries with ambient energy
by Jonathan Fincher  /  February 8, 2013

We’re surrounded by electromagnetic fields almost everywhere these days. Just because they’re almost imperceptible doesn’t mean they can’t be used as a source of energy though. One student in Germany recently built the Electromagnetic Harvester, a small box that allegedly charges an AA battery using just the electromagnetic fields given off by the likes of power lines, vehicles and electronic gadgets. Dennis Siegel, a digital media student at the University of the Arts in Bremen, designed the handheld charger as a way to recover some of the energy from these electromagnetic fields. It may sound a little sketchy, but it’s an idea that many researchers, including a team at Georgia Tech, have been exploring for years. The main issue with this form of energy collection is the amount of power it generates tends to be incredibly small, which might explain why it takes a full day for the Electromagnetic Harvester to charge a single AA battery.

According to Siegel, using the harvester involves simply holding it up to anything with an electromagnetic field – a cell phone, a coffee maker, a commuter train, etc. Once it enters a strong enough field, a red LED will light up to indicate it is charging. It also has a magnet on the back to leave it attached near an EMF source and can charge from the combined fields of living things, like when a person pets a dog. Seigel designed two different versions of the harvester: one for frequencies below 100Hz (like those found in electricity mains) and one for frequencies above 100Hz (like those found in Bluetooth, WLAN, and radio broadcasts). But don’t start thinking this signals the end of charging devices through ordinary wall sockets just yet. While the potential for this type of technology being used to charge very low-powered devices like wireless sensors or RFID tags is there, we remain very skeptical about any practical consumer electronics applications. Aside from not being able to generate enough power for a typical smartphone user, Siegel has yet to reveal any specifics on how his take on the ambient energy charging device works – only that it involves “coils and high frequency diodes.”

German student creates electromagnetic harvester that gathers free electricity from thin air
by Sebastian Anthony / February 12, 2013

A German student has built an electromagnetic harvester that recharges an AA battery by soaking up ambient, environmental radiation. These harvesters can gather free electricity from just about anything, including overhead power lines, coffee machines, refrigerators, or even the emissions from your WiFi router or smartphone. This might sound a bit like hocus-pocus pseudoscience, but the underlying science is actually surprisingly sound. We are, after all, just talking about wireless power transfer — just like the smartphones that are starting to ship with wireless charging tech, and the accompanying charging pads. Dennis Siegel, of the University of Arts Bremen, does away with the charging pad, but the underlying tech is fundamentally the same. We don’t have the exact details — either because he doesn’t know (he may have worked with an electrical engineer), or because he wants to patent the idea first — but his basic description of “coils and high frequency diodes” tallies with how wireless power transfer works. In essence, every electrical device gives off electromagnetic radiation — and if that radiation passes across a coil of wire, an electrical current is produced. Siegel says he has produced two versions of the harvester: One for very low frequencies, such as the 50/60Hz signals from mains power — and another for megahertz (radio, GSM) and gigahertz (Bluetooth/WiFi) radiation.

The efficiency of wireless charging, however, strongly depends on the range and orientation of the transmitter, and how well the coil is tuned to the transmitter’s frequency. In Siegel’s case, “depending on the strength of the electromagnetic field,” his electromagnetic harvester can recharge one AA battery per day. He doesn’t specify, but presumably one-AA-per-day is when he’s sitting next to a huge power substation. It makes you wonder how long it would take to charge an AA battery via your coffee machine, or by leeching from your friend’s mobile phone call. As a concept, though, Siegel’s electromagnetic harvester is very interesting. On its own, a single harvester might not be all that interesting — but what if you stuck a bunch of them, magnetically, to various devices all around your house? Or, perhaps more importantly, why not use these harvesters to power tiny devices that don’t require a lot of energy? Sensors, hearing aids (cochlear implants), smart devices around your home — they could all be powered by harvesting small amounts of energy from the environment. One question does remain, though: How much ambient, wasted electromagnetic radiation is actually available? There are urban legends about people who install coils of wire in their garage, and then suck up large amounts of power from nearby power substations or radio transmitters. Would the power/radio company notice? Would it degrade the service for other people?


“The omnipresence of electromagnetic fields is implied just by simple current flow. We are surrounded by electromagnetic fields which we are producing for information transfer or as a byproduct. Many of those fields are very capacitive and can be harvested with coils and high frequency diodes. Accordingly, I built special harvesting devices that are able to tap into several electromagnetic fields to exploit them. The energy is stored in an usual battery. So you can for example gain redundant energy from the power supply of a coffee machine, a cell phone or an overhead wire by holding the harvester directly into the electromagnetic field whose strength is indicated by a LED on the top of the harvester. Depending on the strength of the electromagnetic field it is possible to charge a small battery within one day. The system is meant to be an option for granting access to already existing but unheeded energy sources. There are two types of harvester for different electromagnetic fields: a smaller harvester that is suitable for lower frequencies below 100Hz which you can find in the general mains (50/60Hz, 16,7Hz) and a bigger one that is suitable for lower and higher frequencies like radio broadcast (~100MHz), GSM (900/1800MHz) up to Bluetooth and WLAN (2,4GHz).”

Electromagnetic induction, a basic test setup

How wireless charging works
by John Hewitt  /  October 15, 2012

The fact that over 200,000 people have downloaded one of the various “shake to charge” apps, now available from Google Play, indicates our willingness to suspend any form of practical reasoning in pursuit of the dream of wireless charging. A quick investigation of the source code would likely reveal these apps do little more than to link the interrupt signal from the accelerometer to a progress bar indicating an alleged battery charge. A piezoelectric accelerometer could generate a small voltage secondary to deformations induced by rapid motions applied to it, however trying to use that millivolt signal to charge a battery would not be practical. In order words, shaking your smartphone isn’t going to do anything but get your arm tired.

During any energy conversion there will be losses in going from one form to another. The magnitude of those losses is what dictates the practicality of any type of wireless charging. Magnetic or inductive charging, in particular has been effectively used for some time to power various kinds of biomedical implants. Presently it is the safest and most enduring method to accomplish the job of transferring power to the inside of the body. In these systems, oscillating current in an external coil of wire generates a changing magnetic field which induces a voltage inside an implanted coil. The current resultant from this voltage can charge a battery or power the device directly. While a moving magnet might just as well be used to externally generate the field, an external coil is simply more practical. Apple has just filed a patent for hardware which could make the shake to charge concept a reality, at least in theory. They claim a unique design incorporating internal moveable magnets, and a flat printed circuit board coil. Current chip efficiencies will however preclude practical implementation of this scheme for some time.

Many smartphone users will be wondering wonder whether their near field communication (NFC) chip can be used to harvest power from a dedicated external source, or perhaps an ambient electromagnetic source like WiFi. In theory it is possible and such systems are on the market already, however not every NFC chip would be up to the task. To achieve maximum efficiency the system should be optimized for a use at a particular separation distance, angle of incidence, phase, and frequency such that it is in a resonant condition. Resonance in an electromagnetic system can be likened to pushing a child on swing only when the swing is at the high point. Anywhere else and the energy transferred to the child will be reduced. If the separation distance is no more than a quarter of the wavelength, such a system can operate at efficiencies up to 35%.

One thing to keep in mind when considering wireless charging: If your charging system is throwing away nearly all of the 10 or so amps available from your wall outlet just to provide you with convenient at-a-distance charging, not only will charging be wasteful but it will be slow. Other wireless charging technologies relying on ultrasound or solar power are being developed, for example by Ubeam. For the time being, however, magnetic inductive charging technologies — spearheaded by the Qi consortium and smartphones like the Nokia Lumia 920 — such have taken the stage.

Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave en...
Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave energy to DC power (Image: Gary Meek)

Scavenging ambient electromagnetic energy to power small electronic devices
by Darren Quick / July 8, 2011

As you sit there reading this story you’re surrounded by electromagnetic energy transmitted from sources such as radio and television transmitters, mobile phone networks and satellite communications systems. Researchers from the Georgia Institute of Technology have created a device that is able to scavenge this ambient energy so it can be used to power small electronic devices such as networks of wireless sensors, microprocessors and communications chips. Manos Tentzeris, a professor in the Georgia Tech School of Electrical and Computer Engineering, and his team used inkjet printing technology to combine sensors, antennas and energy scavenging capabilities on paper or flexible polymers. Presently, the team’s scavenging technology can take advantage of frequencies from FM radio to radar, a range of 100 Mhz to 15 GHz or higher. The devices capture this energy, convert it from AC to DC, and then store it in capacitors and batteries. “There is a large amount of electromagnetic energy all around us, but nobody has been able to tap into it,” said Tentzeris. “We are using an ultra-wideband antenna that lets us exploit a variety of signals in different frequency ranges, giving us greatly increased power-gathering capability.”

So far the team has been able to generate hundreds of milliwatts by harnessing the energy from TV bands. It is expected that multi-band systems would generate one milliwatt or more, which is enough to operate small electronic devices, including a variety of sensors and microprocessors. Tentzeris says exploiting a range of electromagnetic bands increases the dependability of energy scavenging devices as if one frequency range fades due to variations in usage, other frequencies can be used to pick up the slack. The team is also looking at combining the energy scavenging technology with supercapacitors and cycled operation so that the energy builds up in a battery-like superconductor and is utilized once the required level is reached. The team expects this approach would be able to power devices requiring over 50 milliwatts. The researchers have already successfully operated a temperature sensor using electromagnetic energy captured from a television station that was half a kilometer away. They are now preparing another demonstration in which a microprocessor-based microcontroller would be activated simply by holding it in the air.

Manos Tentzeris holds a sensor (left) and an ultra-broadband spiral antenna for wearable energy-scavenging applications that were noth printed on paper using inkjet technology (Image: Gary Meek)

The researchers say the technology could also be used in tandem with other electricity generating technologies. For example, scavenged energy could assist a solar element to charge a battery during the day and then at night, scavenged energy would continue to increase the battery charge or would prevent discharging. It could also be used as a form of system backup. If a battery failed completely, the scavenged energy device could allow the system to transmit a wireless signal while maintaining critical functions. The Georgia Tech team believe that self-powered, wireless paper-based sensors will soon be widely available at very low cost, making then attractive for a range of applications, such as chemical, biological, heat and stress sensing for defense and industry; radio frequency identification (RFID) tagging for manufacturing and shipping, and monitoring tasks in many fields including communications and power usage.



One Man’s Odyssey to Bring Power Back to New York
by Peter Kelly-Detwiler  /  11/14/2012

Shortly after Superstorm Sandy smashed in to the East Coast, Chris Mejia of Consolidated Solar decided to do something about it.  Chris’s company is a distributor for portable solar generators out of Harrisburg, PA..  He leases trailers with a solar unit/battery combination made by DC Solar Solutions in California.  On a normal day, he leases the units for somewhere around $500 to folks who need power someplace where it’s hard to get.  He does pretty well with construction sites, where it’s a lot cheaper to lease a solar generator than string lines to a site.  Construction workers only need limited juice for charging power tools and perhaps a cellphone power, pretty much the same thing disaster survivors require immediately after impact.

So as soon as the storm hit, Chris was on the phone trying to help.  He called the emergency management agencies including the state units and FEMA.  They were too busy to call back.  He tried City Hall and the mayors of small towns.  For a while, it looked like he would be teaming up with a cell phone company, but they finally said no thanks.  He recalled thinking to himself “You need power.  I have power.  Why is this so tough?”  Finally he Googled “Sandy Relief” and identified the relief agencies working in the region.  But they all wanted Chris to donate the unit outright, which he couldn’t do since he was just starting his business and leasing the units from DC Solar Solutions.  Finally, he chanced on the organization Solar One, NY city’s “first green energy, arts, and education center.”  They were developing a solar-based emergency response as well, The Solar Sandy Project.  They turned him onto SolarCity, who volunteered to pick up the leasing costs for his units.

Since then, Chris said, he’s moved three 10 kW units to the area, driving the trailers to where they are needed.  At the moment, all three are in the Rockaways, which the Long Island Power Authority still has not brought on line, with two more to be located there shortly.  Chris notes they are extremely simple to set up. “You fold the panels out so they are pointed at the sun, press a few buttons on the inverter, and that’s it.  It’s on.”  With the battery back-up, they provide an independent source of power to 6 three-prong outlets, with up to 50 amps.  “The moment we set up the first one, a guy ran over to it in order to recharge his flashlight.  Word was spreading quickly as we drove off to set up the other unit.”

As the Sandy post-mortem analysis turns to talk of resiliency and hardening the electric grid, resources that do not depend on fuel at all deserve a place in the conversation.  Solar/battery combinations are likely to play a critical part in a community’s effort to survive the immediate and perilous aftermath.  These units may not provide all of the benefits of the more extensive and powerful micro-grid (micro-grids are isolated mini systems that can be disconnected from a dead power grid), but they are mobile, independent, quick to set up, can be daisy-chained to increase power output, and don’t require a huge infrastructural commitment.  And they are relatively cheap.  For communities that may not be able to commit resources to a full micro-grid, or may take years to set one up, this type of resource is worth considering.  As Chris Collins, Executive Director of Solar One stated “Solar generators should be in the emergency preparedness plan of every community.  After a storm, people need safe places to go.”  In fact, he commented that after the flooding, his own building on the East River “lost everything.  But we set up our solar panels the day after Sandy and we had lights and power.”

Micro-grids are an important solution: a combination of a generator and hardened distribution system can supply reliable and larger quantities of electricity to a small circuit of users including emergency services, shelters, gas stations and grocery stores.  But once you build a micro-grid, you are committed to what you have built.  Mobile solar generators – though not nearly as powerful – can be reconfigured according to need, and can be daisy chained together to provide sufficient power to do more than charge cell phones and batteries.

This concept of solar power in disaster relief is not new.  In the aftermath of 1989’s Hurricane Hugo, a portable solar generator supplied as community center for six weeks after the storm.   After Hurricane Andrew in 1992, PV systems were brought in to provide power to shelters and streetlights.  In the California Northridge earthquake in 1994, PV kept some communications links open.  More recently California-based Mobile Solar freighted 6 units to Japan immediately after the Fukushima disaster, providing communications and battery charges to workers struggling to rebuild.  And a project is underway today to create a solar-powered water purification system to supply the needs of 750-1500 people per day.

In the aftermath of Sandy, it is clear that we have much work to do to plan for prevention, resiliency, and recovery.  Micro-grids will be a critical piece of this puzzle.  But solar generators can play a key and reliable role in disaster recovery and getting communities back on their feet.  They are doing so today in some of the hardest hit areas of the East Coast, and they merit serious consideration.

by Amanda H. Miller  / November 06, 2012

A week after sub tropical storm Sandy made landfall in New York, thousands are still without power in their Rockaway Beach neighborhood homes. Greenpeace has been doing what it can to help and rolled into the neighborhood Oct. 31 with its Rolling Sunlight solar truck. The truck’s 256 square feet of solar panels produce 50 kilowatt hours of electricity a day, enough to power a typical household, said Jesse Coleman, a Greenpeace researcher who is manning the truck. Parked at a storefront at the corner of Rockaway Beach Boulevard and 113th Street, the solar truck is the only spot with electricity for several blocks. “It’s become a major hub,” Coleman said. “The entire area is without power and probably will be for a couple weeks.”

Many residents in the neighborhood have lost everything, Coleman said. Their homes are filled with mud and they have to clean them out with nothing more than light from the sun and flashlights. “It’s a major problem,” he said. “People’s whole lives were destroyed.” While the Rolling Sunlight truck can’t fix all of that, it does give some of the New York residents a place to charge their cell phones so they can call each other, communicate and ask their neighbors for help. It’s also created a warm, lighted gathering place for the community. “People who are now, literally homeless, are out there cooking food for the community and giving it out,” Coleman said.

Greenpeace has set up seven locations throughout the city to help residents, though the Rolling Sunshine truck is the only solar power the organization brought with it. Greenpeace is helping to coordinate donation efforts and process items in a nearby gymnasium. Coleman said they received some box generators that they’re giving out to people who need them. This is not the solar truck’s first appearance. It’s more than 10 years old, Coleman said. And it has brought portable power to people in Mexico, powered the Seattle Space Needle and electronics at events like Occupy New York and Occupy Washington, D.C. Coleman said he plans to stay until the weekend and will likely spend this week on helping residents transition.


There is a lot of misinformation circulating on social networks regarding the response and recovery effort for Hurricane Sandy. Rumors spread fast: please tell a friend, share this page and help us provide accurate information about the types of assistance available. Check here often for an on-going list of rumors and their true or false status.


Calling 1-800-621-FEMA
Due to the large volume of calls, individuals trying to register with FEMA may experience long wait times. We ask for your patience as FEMA is increasing its capacity at call centers to address long wait times.  For individuals with internet access, you can register with FEMA for disaster assistance by visiting www.disasterassistance.gov orhttp://m.fema.gov on your mobile phone.   The websites and 1-800-621-FEMA request identical information.

EXAMPLE RUMOR:  Cash Cards / Food Stamps
There are message boards and traffic on social media sites related to FEMA and/or the American Red Cross distributing cash cards to individuals affected by Hurricane Sandy.  This is FALSE.

A group takes advantage of Amazon’s gift registry to get donations to storm victims / Nov 5 2012

Occupy Sandy isn’t getting married. But it would like a gift all the same. The volunteer group — an offshoot of Occupy Wall Street, focused on helping victims of the storm — is using an especially clever hack of an existing system: Amazon’s gift registry service. Those displaced by the storm, the group realized, need blankets. They need flashlights. They need hygiene products. They need a bunch of things that are orderable — with that famous one-click efficiency — through Amazon. Now, anyone who uses Amazon can buy them those things, and have them shipped to the area hardest hit by the storm. Victims need stuff; people want to give them stuff; Occupy Sandy, via Amazon, is bringing them together. The registry started, coordinator John Heggestuen told me, with a particularly frustrating phenomenon: a thwarted attempt at volunteering. Heggestuen and two of his friends — Alex Nordenson and Katherine Dolan — went to a shelter on Friday in an attempt to volunteer there. “They didn’t have anything for us to do,” Heggestuen said in an email, “so we went to the Occupy Sandy location at 520 Clinton Ave (Church of St. Luke and St. Matthew).” And “there was a tremendous effort there.”

As the friends were walking to a store to buy some food that they could donate, Heggestuen says, they talked about how they might improve the donation system. “My friend Alex said something to the effect of, ‘we need something like a wedding registry.’ I thought it was a great idea and my gears started turning. When we got to the store, I was so excited that I gave my friends my money for groceries and ran back to the church to start to set this up.” Heggestuen asked Sam Corbin, who was was helping to oversee the effort at the church, if the location could serve as a shipping address for out-state-donations. And “she said it was a great idea.” With that in place, the friends worked on setting up the registry over the weekend — an effort helped along by the fact that both Nordenson and Dolan work in social media. “Right now,” Heggestuen says, “we are setting up an inventory management team at the church to keep track of the donations when they arrive.”

As for the people who have decided to use the registry to assist Sandy’s victims? “We are still trying to get clear numbers,” Heggestuen says. “We know it’s a lot from emails we have received, but Amazon’s registry is not updating quickly enough to accurately reflect what has been bought. We need some help getting their attention and we are asking twitter users to tweet @amazon for free shipping and tech support for the Sandy Wedding Registry.” Despite the lag time, though, gifts are being bought. Thanks to the effort, Sandy victims will have blankets — and flashlights, and toothbrushes — that they didn’t before. “It is really inspiring how much support has poured out for Sandy victims,” Heggestuen says. “I have never seen a volunteer effort like Occupy Sandy, everyone is so motivated to help. I’m humbled.”


Even two weeks later, the air quality in the hardest hit areas of New York City is still extremely poor. There is an enormous amount of dust, human waste, and previously buried pollution in the air. The stench of gasoline is also pervasive. Since the storm hit, you can smell gas all over parts of Rockaway and Staten Island, as people line up in cars or on foot waiting for to get what little gas is being rationed each day. It’s ironic that gas is so scarce yet, due to all the emergency gas generators and stoves, our lungs are filled with the stuff.

In the hardest hit places like Rockaway and Gerritsen Beach, people have two choices each day: (1) go get some food for the day, maybe find someone to fill a prescription, or inquire about FEMA assistance; or (2) do none of those things, and wait in a four-hour gas line so they can have some heat that night.

It is in this bleak context that the Solar Sandy Project was conceived. First, our company SolarCity partnered with Consolidated Solar to deploy five solar generating units (equipped with battery storage) as quickly as possible. To date these generators have served four areas in Rockaway, with one more scheduled this week. We partnered with NYC-based solar advocacy group Solar One to help spread the word, do community outreach, and host a match making website for areas of further need. These solar generators can provide power for warmth, cooking, electronics charging, and whatever else people need. And they do all this without burning gas that (a) might be better put to use in cars right now, and (b) would preferably not be burned anyway.


Solar One, SolarCityConsolidated Solar and NYSERDA are partnering to connect communities rebuilding from Sandy to mobile solar generators so that they can get much-needed temporary electricity. So far, we have installed five 10kw solar generators deployed in the Rockaways. We will be installing units in other parts of the city in the coming days. These units are installed in community gathering places where folks are already getting warm clothes, a bite to eat, and some basic medical services.

With solar generators, we can provide clean, quiet power hubs that don’t need refueling. People can charge phones, power tools, and laptops; heat food; and run other critical equipment. Not an installer? Donate to the project!

From Installers/Equipment Providers

  • Plug and play mobile generators that can easily be setup for these communities.
  • Individuals with the right skill set (solar installers, electricians, etc) who can help with deployment, installation, and maintenance of the systems
  • If you have off-grid solar experience with battery storage, this can be particularly useful.
  • If you can assist in any way, fill out the Installer/Equipment Sign-Up below.

From Community Organizations:

  • We are trying to figure out the best places to deploy these generators. Ideally they would be in already existing community gathering spots that have cropped up since the storm.
  • If you would like to be considered, please fill out the Deployment Area Sign-Up below.
Installer/Equipment Sign-Up Deployment Area Sign-Up


Want to sign up to get more info, help out in another way, or donate? Email volunteer[at]solar1[dot]org using the subject line Solar Sandy.

Check out our Press Release and contact the person listed.

Here’s a map of where the current solar installations can be found in Staten Island and the Rockaways(use the arrows to scroll left and right to see where the installations are):

KEY: The systems that we have deployed by the Solar Sandy Project are in Blue. Systems that have been deployed by friends and affiliates are in Purple.

View Solar Sandy Project in a larger map