The Vertical Forest / by Britt Hysen

The age of green is upon us. We have reached a point in our human evolution where science, math, and creative genius have discovered a way to suspend a living forest in mid air. The answer to city pollution is now Stefano Boeri’s Bosco Verticale, the world’s first 27-story microclimate apartment towers currently under construction in Milan, Italy. Built to function as city air purifiers, these lush apartments will include over 900 trees, 5,000 bushes, and 11,000 plants throughout the tower balconies. Each perch of life will aid in reducing city noise, moderating atmospheric temperatures, absorbing CO2 emissions, and acting as an energy sustainer for seasonal weather shifts. This model will tremendously increase air quality as living expenses will dramatically decrease. Utilities will be relatively low as each ecosystem is generated through natural light and grey-water irrigation and helps to conserve energy throughout each unit. To take this sustainable design to the next level, Boeri plans to implement BioMilano, a project to revitalize the biological space within the entire city of Milan. His vision is to stop expanding the city into rural environments, and instead fuse urban dwellings with agricultural prosperity.

Milan is one of the most polluted cities in the world with benzene-laced air equivalent to smoking 15 cigarettes a day. As the metropolis continues to grow, more and more agricultural land and natural habitats are being destroyed. With countries across the globe experiencing their industrial revolution, the importance of maintaining a balanced ecosystem becomes increasingly relevant to the survival of our Earthy humanity. On his company website, Boeri reports that BioMilano is for “metropolitan reforestation that contributes to the regeneration of the environment and urban biodiversity without the implication of expanding the city upon the territory.” The transitional state from concrete jungle to urban biospheres will set the precedence for other major metropolitan cities to embrace the same sustainable ideology.

View from the Porta Nuova parkland.  3d image.  The Vertical Forest.  Boeri Studio
view from the Porta Nuova parkland

Boeri states on his site that in order for these changes to occur, a new agreement needs to be made between the city, the natural world, and the agriculture industry. At the core of BioMilano, 60 publicly owned and abandoned farms around the edge of Milan have been zoned for a new kind of farming that will provide work for the community and produce food for local markets. “BioMilan is a political project which aims to increase the number of businesses which, working together in areas linked to agriculture, forestation and renewable energy, can regenerate the urban economy and provide forms of integration and work for thousands of citizens,” Boeri says of the proposed project.  With a suppressed economy and dense population, Milan will be able to reverse their toxic spiral and establish a thriving yet healthy city economy with Bosco Verticale and BioMilano. As Boeri paves the way for urban restitution, the world anxiously watches as his first building is put into effect. The idea of a vertical forest is not only fascinating and timely, but is also quite necessary for our environmental survival and wellbeing. If Boeri’s Bosco Verticale is a success, we might have just saved our world from hitting that fast-approaching iceberg.

The Vertical Forest, green architecture in Milan, of Boeri Studio
by Javier Toro Caviedes / July 16, 2013

In the Via Gaetano Castillia, north of Milan in Italy, are building two residential towers with its verdant facades. The architects of the project dating from 2007 are architects Stefano Boeri, Gianandrea Barreca and Giovanni La Varra, belonging to Boeri Studio. The project was baptized with the name of Il Bosco Verticale (Vertical Forest) because it has an area of trees, shrubs and plants, equivalent to 10,000 m2 . To water these plants thousands of giant planters settled in the terraces, it has projected an irrigation system that filters and reuses sewage and stormwater from the buildings. In addition, the towers have facilities for solar and wind energy.

lifting plants. The Vertical Forest, Boeri Studio {Marco Garofalo}

The dense vegetation of the facades, which in summer will decrease the temperature inside the building and that after the fall of leaves in autumn sunlight collected facades. The aim is to create a microclimate and increase moisture and freshness in the building. Plants absorb CO2 , produce oxygen, filter dust from pollution concern Milanese, and protect against noise. In addition, the CO2 from the construction process will be reduced by the CO2 absorbed by the plants, so the long-term balance will be offset.

view from Via Gaetano Castillia, May 2012 {Google Street View}

The Vertical Forest is promoted by the U.S. company Hines, who began developing Spain Diagonal Mar in Barcelona. The apartments range from 60 m2 apartments to duplex penthouses of 495 m2, with a rapid sale prices. The new urban renewal, near Porta Garibaldi Station, it has been called Porta Nuova, and has other residential buildings and commercial offices.But the Italian crisis has taken its toll at Vertical Forest and a few weeks ago the construction company was in receivership. Hines contractor changed, trusting resume work before the end of summer, and the consequent delay in the completion will be delayed until the spring of 2014.


Caracas’ Deserted Bank Tower turned Skyscraper Slum  /  May 7, 2013

It was built for stockbrokers and bankers in their thousand dollar suits to make million dollar deals, but for nearly two decades it has held the less impressive title of the world’s tallest squat. Welcome to the Centro Financiero Confinanzas, more commonly known as the Torre David (the Tower of David) in Caracas, Venezuela, an unfinished skyscraper which has now been colonised by an ad hoc community of over 700 families. Construction of the 45 story high building began in 1990, under the investment of David Brillembourg. He died just three years later of cancer and following the Venezuelan banking crisis of 1994, the government took ‘control’ in 1994. Except very little ‘government control’ prevails here. Within a few years of abandonment, people with no home, searching for a space to exist began venturing into the skeletal concrete structure.

Their ‘rooms with a view’ lacked walls, working electricity, running water, windows, balcony railings and certainly no elevator, yet the new residents settled in as high as the 30th floor. Chilling stories of small children playing too close to the edge and deadly winds gusting through living quarters were a constant reminder of the risks they were taking.

Little by little however, they began crudely patching up the unfinished work that builders left behind. Found or makeshift materials were hauled up countless unlit stairwells to provide basic services and safety measures. They now have running water that reaches up to the 22nd floor. A village-like community began to flourish behind its sleekly designed shell. Grocery stores on every inhabited floor, hairdressers and even a dentist (unlicensed) operate in the Torre David.

Concrete terraces open to dizzying heights have been walled up and fashioned into balconies dotted with satellite dishes. Community leaders have been chosen to seek legalisation for their unusual vertical settlement despite  the concrete behemoth still being a fundamentally unsafe place to live. Hailed even by some as a near utopic society, Torre David has become an unlikely example of  human resourcefulness and self-sufficiency in the face of a government’s incompetence. Raising awareness for the Torre David and the questions it brings forward about urban space and slum territories, is Urban Think Tank, a project founded by a man who’s last name you might remember from the beginning of the article, Alfredo Brillembourg. A relative of David Brillembourg, the late investor behind the Torre David, has stepped forward to call on architects and developers of the world to see the potential for innovation and experimentation in informal settlements. “It doesn’t look good, but it has the seed of a very interesting dream of how to organize life”, says Alfredo, whose ultimate goal is to see urban architectural design helping to create a more sustainable future.

In 2012, the think tank made a documentary film that premiered and attracted a lot of attention at the Venice Biennale. A book featuring the stunning photography of David Bann and a study of the informal vertical community has also been released this year.

A helipad sits on the roof of the Torre David, where CEO’s leading a gilded lifestyle were supposed to have been dropped off for a day of meetings in their corner office with citywide views. In this skyscraper that was built to be an emblem of Venezuelan entrepreneurial and financial power, 2,500 squatters are now busily creating opportunities for themselves in a micro-economy. Residents claim it’s better than the street and the hillside slums that can be seen in the distance. As much as it’s a symbol of human adaptability however, it is also one of failure– sadly a place that people are calling their home. Still mad at your landlord?



sustainable design, green design, green transportation, bus planter, green roofed bus, bus roots, marco castro cosio, gardening
Fans of the WHO Farm Project and other crazy green bus projects may enjoy Bus Roots, a green roof system designed for buses by Marco Castro Cosio



Electromagnetic Harvester claims to charge batteries with ambient energy
by Jonathan Fincher  /  February 8, 2013

We’re surrounded by electromagnetic fields almost everywhere these days. Just because they’re almost imperceptible doesn’t mean they can’t be used as a source of energy though. One student in Germany recently built the Electromagnetic Harvester, a small box that allegedly charges an AA battery using just the electromagnetic fields given off by the likes of power lines, vehicles and electronic gadgets. Dennis Siegel, a digital media student at the University of the Arts in Bremen, designed the handheld charger as a way to recover some of the energy from these electromagnetic fields. It may sound a little sketchy, but it’s an idea that many researchers, including a team at Georgia Tech, have been exploring for years. The main issue with this form of energy collection is the amount of power it generates tends to be incredibly small, which might explain why it takes a full day for the Electromagnetic Harvester to charge a single AA battery.

According to Siegel, using the harvester involves simply holding it up to anything with an electromagnetic field – a cell phone, a coffee maker, a commuter train, etc. Once it enters a strong enough field, a red LED will light up to indicate it is charging. It also has a magnet on the back to leave it attached near an EMF source and can charge from the combined fields of living things, like when a person pets a dog. Seigel designed two different versions of the harvester: one for frequencies below 100Hz (like those found in electricity mains) and one for frequencies above 100Hz (like those found in Bluetooth, WLAN, and radio broadcasts). But don’t start thinking this signals the end of charging devices through ordinary wall sockets just yet. While the potential for this type of technology being used to charge very low-powered devices like wireless sensors or RFID tags is there, we remain very skeptical about any practical consumer electronics applications. Aside from not being able to generate enough power for a typical smartphone user, Siegel has yet to reveal any specifics on how his take on the ambient energy charging device works – only that it involves “coils and high frequency diodes.”

German student creates electromagnetic harvester that gathers free electricity from thin air
by Sebastian Anthony / February 12, 2013

A German student has built an electromagnetic harvester that recharges an AA battery by soaking up ambient, environmental radiation. These harvesters can gather free electricity from just about anything, including overhead power lines, coffee machines, refrigerators, or even the emissions from your WiFi router or smartphone. This might sound a bit like hocus-pocus pseudoscience, but the underlying science is actually surprisingly sound. We are, after all, just talking about wireless power transfer — just like the smartphones that are starting to ship with wireless charging tech, and the accompanying charging pads. Dennis Siegel, of the University of Arts Bremen, does away with the charging pad, but the underlying tech is fundamentally the same. We don’t have the exact details — either because he doesn’t know (he may have worked with an electrical engineer), or because he wants to patent the idea first — but his basic description of “coils and high frequency diodes” tallies with how wireless power transfer works. In essence, every electrical device gives off electromagnetic radiation — and if that radiation passes across a coil of wire, an electrical current is produced. Siegel says he has produced two versions of the harvester: One for very low frequencies, such as the 50/60Hz signals from mains power — and another for megahertz (radio, GSM) and gigahertz (Bluetooth/WiFi) radiation.

The efficiency of wireless charging, however, strongly depends on the range and orientation of the transmitter, and how well the coil is tuned to the transmitter’s frequency. In Siegel’s case, “depending on the strength of the electromagnetic field,” his electromagnetic harvester can recharge one AA battery per day. He doesn’t specify, but presumably one-AA-per-day is when he’s sitting next to a huge power substation. It makes you wonder how long it would take to charge an AA battery via your coffee machine, or by leeching from your friend’s mobile phone call. As a concept, though, Siegel’s electromagnetic harvester is very interesting. On its own, a single harvester might not be all that interesting — but what if you stuck a bunch of them, magnetically, to various devices all around your house? Or, perhaps more importantly, why not use these harvesters to power tiny devices that don’t require a lot of energy? Sensors, hearing aids (cochlear implants), smart devices around your home — they could all be powered by harvesting small amounts of energy from the environment. One question does remain, though: How much ambient, wasted electromagnetic radiation is actually available? There are urban legends about people who install coils of wire in their garage, and then suck up large amounts of power from nearby power substations or radio transmitters. Would the power/radio company notice? Would it degrade the service for other people?


“The omnipresence of electromagnetic fields is implied just by simple current flow. We are surrounded by electromagnetic fields which we are producing for information transfer or as a byproduct. Many of those fields are very capacitive and can be harvested with coils and high frequency diodes. Accordingly, I built special harvesting devices that are able to tap into several electromagnetic fields to exploit them. The energy is stored in an usual battery. So you can for example gain redundant energy from the power supply of a coffee machine, a cell phone or an overhead wire by holding the harvester directly into the electromagnetic field whose strength is indicated by a LED on the top of the harvester. Depending on the strength of the electromagnetic field it is possible to charge a small battery within one day. The system is meant to be an option for granting access to already existing but unheeded energy sources. There are two types of harvester for different electromagnetic fields: a smaller harvester that is suitable for lower frequencies below 100Hz which you can find in the general mains (50/60Hz, 16,7Hz) and a bigger one that is suitable for lower and higher frequencies like radio broadcast (~100MHz), GSM (900/1800MHz) up to Bluetooth and WLAN (2,4GHz).”

Electromagnetic induction, a basic test setup

How wireless charging works
by John Hewitt  /  October 15, 2012

The fact that over 200,000 people have downloaded one of the various “shake to charge” apps, now available from Google Play, indicates our willingness to suspend any form of practical reasoning in pursuit of the dream of wireless charging. A quick investigation of the source code would likely reveal these apps do little more than to link the interrupt signal from the accelerometer to a progress bar indicating an alleged battery charge. A piezoelectric accelerometer could generate a small voltage secondary to deformations induced by rapid motions applied to it, however trying to use that millivolt signal to charge a battery would not be practical. In order words, shaking your smartphone isn’t going to do anything but get your arm tired.

During any energy conversion there will be losses in going from one form to another. The magnitude of those losses is what dictates the practicality of any type of wireless charging. Magnetic or inductive charging, in particular has been effectively used for some time to power various kinds of biomedical implants. Presently it is the safest and most enduring method to accomplish the job of transferring power to the inside of the body. In these systems, oscillating current in an external coil of wire generates a changing magnetic field which induces a voltage inside an implanted coil. The current resultant from this voltage can charge a battery or power the device directly. While a moving magnet might just as well be used to externally generate the field, an external coil is simply more practical. Apple has just filed a patent for hardware which could make the shake to charge concept a reality, at least in theory. They claim a unique design incorporating internal moveable magnets, and a flat printed circuit board coil. Current chip efficiencies will however preclude practical implementation of this scheme for some time.

Many smartphone users will be wondering wonder whether their near field communication (NFC) chip can be used to harvest power from a dedicated external source, or perhaps an ambient electromagnetic source like WiFi. In theory it is possible and such systems are on the market already, however not every NFC chip would be up to the task. To achieve maximum efficiency the system should be optimized for a use at a particular separation distance, angle of incidence, phase, and frequency such that it is in a resonant condition. Resonance in an electromagnetic system can be likened to pushing a child on swing only when the swing is at the high point. Anywhere else and the energy transferred to the child will be reduced. If the separation distance is no more than a quarter of the wavelength, such a system can operate at efficiencies up to 35%.

One thing to keep in mind when considering wireless charging: If your charging system is throwing away nearly all of the 10 or so amps available from your wall outlet just to provide you with convenient at-a-distance charging, not only will charging be wasteful but it will be slow. Other wireless charging technologies relying on ultrasound or solar power are being developed, for example by Ubeam. For the time being, however, magnetic inductive charging technologies — spearheaded by the Qi consortium and smartphones like the Nokia Lumia 920 — such have taken the stage.

Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave en...
Manos Tentzeris displays an inkjet-printed rectifying antenna used to convert microwave energy to DC power (Image: Gary Meek)

Scavenging ambient electromagnetic energy to power small electronic devices
by Darren Quick / July 8, 2011

As you sit there reading this story you’re surrounded by electromagnetic energy transmitted from sources such as radio and television transmitters, mobile phone networks and satellite communications systems. Researchers from the Georgia Institute of Technology have created a device that is able to scavenge this ambient energy so it can be used to power small electronic devices such as networks of wireless sensors, microprocessors and communications chips. Manos Tentzeris, a professor in the Georgia Tech School of Electrical and Computer Engineering, and his team used inkjet printing technology to combine sensors, antennas and energy scavenging capabilities on paper or flexible polymers. Presently, the team’s scavenging technology can take advantage of frequencies from FM radio to radar, a range of 100 Mhz to 15 GHz or higher. The devices capture this energy, convert it from AC to DC, and then store it in capacitors and batteries. “There is a large amount of electromagnetic energy all around us, but nobody has been able to tap into it,” said Tentzeris. “We are using an ultra-wideband antenna that lets us exploit a variety of signals in different frequency ranges, giving us greatly increased power-gathering capability.”

So far the team has been able to generate hundreds of milliwatts by harnessing the energy from TV bands. It is expected that multi-band systems would generate one milliwatt or more, which is enough to operate small electronic devices, including a variety of sensors and microprocessors. Tentzeris says exploiting a range of electromagnetic bands increases the dependability of energy scavenging devices as if one frequency range fades due to variations in usage, other frequencies can be used to pick up the slack. The team is also looking at combining the energy scavenging technology with supercapacitors and cycled operation so that the energy builds up in a battery-like superconductor and is utilized once the required level is reached. The team expects this approach would be able to power devices requiring over 50 milliwatts. The researchers have already successfully operated a temperature sensor using electromagnetic energy captured from a television station that was half a kilometer away. They are now preparing another demonstration in which a microprocessor-based microcontroller would be activated simply by holding it in the air.

Manos Tentzeris holds a sensor (left) and an ultra-broadband spiral antenna for wearable energy-scavenging applications that were noth printed on paper using inkjet technology (Image: Gary Meek)

The researchers say the technology could also be used in tandem with other electricity generating technologies. For example, scavenged energy could assist a solar element to charge a battery during the day and then at night, scavenged energy would continue to increase the battery charge or would prevent discharging. It could also be used as a form of system backup. If a battery failed completely, the scavenged energy device could allow the system to transmit a wireless signal while maintaining critical functions. The Georgia Tech team believe that self-powered, wireless paper-based sensors will soon be widely available at very low cost, making then attractive for a range of applications, such as chemical, biological, heat and stress sensing for defense and industry; radio frequency identification (RFID) tagging for manufacturing and shipping, and monitoring tasks in many fields including communications and power usage.



One Man’s Odyssey to Bring Power Back to New York
by Peter Kelly-Detwiler  /  11/14/2012

Shortly after Superstorm Sandy smashed in to the East Coast, Chris Mejia of Consolidated Solar decided to do something about it.  Chris’s company is a distributor for portable solar generators out of Harrisburg, PA..  He leases trailers with a solar unit/battery combination made by DC Solar Solutions in California.  On a normal day, he leases the units for somewhere around $500 to folks who need power someplace where it’s hard to get.  He does pretty well with construction sites, where it’s a lot cheaper to lease a solar generator than string lines to a site.  Construction workers only need limited juice for charging power tools and perhaps a cellphone power, pretty much the same thing disaster survivors require immediately after impact.

So as soon as the storm hit, Chris was on the phone trying to help.  He called the emergency management agencies including the state units and FEMA.  They were too busy to call back.  He tried City Hall and the mayors of small towns.  For a while, it looked like he would be teaming up with a cell phone company, but they finally said no thanks.  He recalled thinking to himself “You need power.  I have power.  Why is this so tough?”  Finally he Googled “Sandy Relief” and identified the relief agencies working in the region.  But they all wanted Chris to donate the unit outright, which he couldn’t do since he was just starting his business and leasing the units from DC Solar Solutions.  Finally, he chanced on the organization Solar One, NY city’s “first green energy, arts, and education center.”  They were developing a solar-based emergency response as well, The Solar Sandy Project.  They turned him onto SolarCity, who volunteered to pick up the leasing costs for his units.

Since then, Chris said, he’s moved three 10 kW units to the area, driving the trailers to where they are needed.  At the moment, all three are in the Rockaways, which the Long Island Power Authority still has not brought on line, with two more to be located there shortly.  Chris notes they are extremely simple to set up. “You fold the panels out so they are pointed at the sun, press a few buttons on the inverter, and that’s it.  It’s on.”  With the battery back-up, they provide an independent source of power to 6 three-prong outlets, with up to 50 amps.  “The moment we set up the first one, a guy ran over to it in order to recharge his flashlight.  Word was spreading quickly as we drove off to set up the other unit.”

As the Sandy post-mortem analysis turns to talk of resiliency and hardening the electric grid, resources that do not depend on fuel at all deserve a place in the conversation.  Solar/battery combinations are likely to play a critical part in a community’s effort to survive the immediate and perilous aftermath.  These units may not provide all of the benefits of the more extensive and powerful micro-grid (micro-grids are isolated mini systems that can be disconnected from a dead power grid), but they are mobile, independent, quick to set up, can be daisy-chained to increase power output, and don’t require a huge infrastructural commitment.  And they are relatively cheap.  For communities that may not be able to commit resources to a full micro-grid, or may take years to set one up, this type of resource is worth considering.  As Chris Collins, Executive Director of Solar One stated “Solar generators should be in the emergency preparedness plan of every community.  After a storm, people need safe places to go.”  In fact, he commented that after the flooding, his own building on the East River “lost everything.  But we set up our solar panels the day after Sandy and we had lights and power.”

Micro-grids are an important solution: a combination of a generator and hardened distribution system can supply reliable and larger quantities of electricity to a small circuit of users including emergency services, shelters, gas stations and grocery stores.  But once you build a micro-grid, you are committed to what you have built.  Mobile solar generators – though not nearly as powerful – can be reconfigured according to need, and can be daisy chained together to provide sufficient power to do more than charge cell phones and batteries.

This concept of solar power in disaster relief is not new.  In the aftermath of 1989’s Hurricane Hugo, a portable solar generator supplied as community center for six weeks after the storm.   After Hurricane Andrew in 1992, PV systems were brought in to provide power to shelters and streetlights.  In the California Northridge earthquake in 1994, PV kept some communications links open.  More recently California-based Mobile Solar freighted 6 units to Japan immediately after the Fukushima disaster, providing communications and battery charges to workers struggling to rebuild.  And a project is underway today to create a solar-powered water purification system to supply the needs of 750-1500 people per day.

In the aftermath of Sandy, it is clear that we have much work to do to plan for prevention, resiliency, and recovery.  Micro-grids will be a critical piece of this puzzle.  But solar generators can play a key and reliable role in disaster recovery and getting communities back on their feet.  They are doing so today in some of the hardest hit areas of the East Coast, and they merit serious consideration.

by Amanda H. Miller  / November 06, 2012

A week after sub tropical storm Sandy made landfall in New York, thousands are still without power in their Rockaway Beach neighborhood homes. Greenpeace has been doing what it can to help and rolled into the neighborhood Oct. 31 with its Rolling Sunlight solar truck. The truck’s 256 square feet of solar panels produce 50 kilowatt hours of electricity a day, enough to power a typical household, said Jesse Coleman, a Greenpeace researcher who is manning the truck. Parked at a storefront at the corner of Rockaway Beach Boulevard and 113th Street, the solar truck is the only spot with electricity for several blocks. “It’s become a major hub,” Coleman said. “The entire area is without power and probably will be for a couple weeks.”

Many residents in the neighborhood have lost everything, Coleman said. Their homes are filled with mud and they have to clean them out with nothing more than light from the sun and flashlights. “It’s a major problem,” he said. “People’s whole lives were destroyed.” While the Rolling Sunlight truck can’t fix all of that, it does give some of the New York residents a place to charge their cell phones so they can call each other, communicate and ask their neighbors for help. It’s also created a warm, lighted gathering place for the community. “People who are now, literally homeless, are out there cooking food for the community and giving it out,” Coleman said.

Greenpeace has set up seven locations throughout the city to help residents, though the Rolling Sunshine truck is the only solar power the organization brought with it. Greenpeace is helping to coordinate donation efforts and process items in a nearby gymnasium. Coleman said they received some box generators that they’re giving out to people who need them. This is not the solar truck’s first appearance. It’s more than 10 years old, Coleman said. And it has brought portable power to people in Mexico, powered the Seattle Space Needle and electronics at events like Occupy New York and Occupy Washington, D.C. Coleman said he plans to stay until the weekend and will likely spend this week on helping residents transition.


There is a lot of misinformation circulating on social networks regarding the response and recovery effort for Hurricane Sandy. Rumors spread fast: please tell a friend, share this page and help us provide accurate information about the types of assistance available. Check here often for an on-going list of rumors and their true or false status.

Calling 1-800-621-FEMA
Due to the large volume of calls, individuals trying to register with FEMA may experience long wait times. We ask for your patience as FEMA is increasing its capacity at call centers to address long wait times.  For individuals with internet access, you can register with FEMA for disaster assistance by visiting or on your mobile phone.   The websites and 1-800-621-FEMA request identical information.

EXAMPLE RUMOR:  Cash Cards / Food Stamps
There are message boards and traffic on social media sites related to FEMA and/or the American Red Cross distributing cash cards to individuals affected by Hurricane Sandy.  This is FALSE.

A group takes advantage of Amazon’s gift registry to get donations to storm victims / Nov 5 2012

Occupy Sandy isn’t getting married. But it would like a gift all the same. The volunteer group — an offshoot of Occupy Wall Street, focused on helping victims of the storm — is using an especially clever hack of an existing system: Amazon’s gift registry service. Those displaced by the storm, the group realized, need blankets. They need flashlights. They need hygiene products. They need a bunch of things that are orderable — with that famous one-click efficiency — through Amazon. Now, anyone who uses Amazon can buy them those things, and have them shipped to the area hardest hit by the storm. Victims need stuff; people want to give them stuff; Occupy Sandy, via Amazon, is bringing them together. The registry started, coordinator John Heggestuen told me, with a particularly frustrating phenomenon: a thwarted attempt at volunteering. Heggestuen and two of his friends — Alex Nordenson and Katherine Dolan — went to a shelter on Friday in an attempt to volunteer there. “They didn’t have anything for us to do,” Heggestuen said in an email, “so we went to the Occupy Sandy location at 520 Clinton Ave (Church of St. Luke and St. Matthew).” And “there was a tremendous effort there.”

As the friends were walking to a store to buy some food that they could donate, Heggestuen says, they talked about how they might improve the donation system. “My friend Alex said something to the effect of, ‘we need something like a wedding registry.’ I thought it was a great idea and my gears started turning. When we got to the store, I was so excited that I gave my friends my money for groceries and ran back to the church to start to set this up.” Heggestuen asked Sam Corbin, who was was helping to oversee the effort at the church, if the location could serve as a shipping address for out-state-donations. And “she said it was a great idea.” With that in place, the friends worked on setting up the registry over the weekend — an effort helped along by the fact that both Nordenson and Dolan work in social media. “Right now,” Heggestuen says, “we are setting up an inventory management team at the church to keep track of the donations when they arrive.”

As for the people who have decided to use the registry to assist Sandy’s victims? “We are still trying to get clear numbers,” Heggestuen says. “We know it’s a lot from emails we have received, but Amazon’s registry is not updating quickly enough to accurately reflect what has been bought. We need some help getting their attention and we are asking twitter users to tweet @amazon for free shipping and tech support for the Sandy Wedding Registry.” Despite the lag time, though, gifts are being bought. Thanks to the effort, Sandy victims will have blankets — and flashlights, and toothbrushes — that they didn’t before. “It is really inspiring how much support has poured out for Sandy victims,” Heggestuen says. “I have never seen a volunteer effort like Occupy Sandy, everyone is so motivated to help. I’m humbled.”

Even two weeks later, the air quality in the hardest hit areas of New York City is still extremely poor. There is an enormous amount of dust, human waste, and previously buried pollution in the air. The stench of gasoline is also pervasive. Since the storm hit, you can smell gas all over parts of Rockaway and Staten Island, as people line up in cars or on foot waiting for to get what little gas is being rationed each day. It’s ironic that gas is so scarce yet, due to all the emergency gas generators and stoves, our lungs are filled with the stuff.

In the hardest hit places like Rockaway and Gerritsen Beach, people have two choices each day: (1) go get some food for the day, maybe find someone to fill a prescription, or inquire about FEMA assistance; or (2) do none of those things, and wait in a four-hour gas line so they can have some heat that night.

It is in this bleak context that the Solar Sandy Project was conceived. First, our company SolarCity partnered with Consolidated Solar to deploy five solar generating units (equipped with battery storage) as quickly as possible. To date these generators have served four areas in Rockaway, with one more scheduled this week. We partnered with NYC-based solar advocacy group Solar One to help spread the word, do community outreach, and host a match making website for areas of further need. These solar generators can provide power for warmth, cooking, electronics charging, and whatever else people need. And they do all this without burning gas that (a) might be better put to use in cars right now, and (b) would preferably not be burned anyway.


Solar One, SolarCityConsolidated Solar and NYSERDA are partnering to connect communities rebuilding from Sandy to mobile solar generators so that they can get much-needed temporary electricity. So far, we have installed five 10kw solar generators deployed in the Rockaways. We will be installing units in other parts of the city in the coming days. These units are installed in community gathering places where folks are already getting warm clothes, a bite to eat, and some basic medical services.

With solar generators, we can provide clean, quiet power hubs that don’t need refueling. People can charge phones, power tools, and laptops; heat food; and run other critical equipment. Not an installer? Donate to the project!

From Installers/Equipment Providers

  • Plug and play mobile generators that can easily be setup for these communities.
  • Individuals with the right skill set (solar installers, electricians, etc) who can help with deployment, installation, and maintenance of the systems
  • If you have off-grid solar experience with battery storage, this can be particularly useful.
  • If you can assist in any way, fill out the Installer/Equipment Sign-Up below.

From Community Organizations:

  • We are trying to figure out the best places to deploy these generators. Ideally they would be in already existing community gathering spots that have cropped up since the storm.
  • If you would like to be considered, please fill out the Deployment Area Sign-Up below.
Installer/Equipment Sign-Up Deployment Area Sign-Up


Want to sign up to get more info, help out in another way, or donate? Email volunteer[at]solar1[dot]org using the subject line Solar Sandy.

Check out our Press Release and contact the person listed.

Here’s a map of where the current solar installations can be found in Staten Island and the Rockaways(use the arrows to scroll left and right to see where the installations are):

KEY: The systems that we have deployed by the Solar Sandy Project are in Blue. Systems that have been deployed by friends and affiliates are in Purple.

View Solar Sandy Project in a larger map



DOI: 10.1149/2.034208jes
Breaking the barriers for low-cost energy storage / August 1, 2012

A new low-cost, “air-breathing” battery has the capacity to store between eight and 24 hours’ worth of energy. The rechargeable and eco-friendly battery uses the chemical energy generated by the oxidation of iron plates that are exposed to the oxygen in the air—a process similar to rusting. “Iron is cheap and air is free,” says Sri Narayan, professor of chemistry at the University of Southern California (USC). “It’s the future.” Details about the battery were published in the Journal of the Electrochemical Society. Narayan’s patent is pending, and both the federal government and California utilities have expressed interest in the project. Iron-air batteries have been around for decades—they saw a surge in interest during the 1970s energy crisis, but suffered from a crippling problem: a competing chemical reaction of hydrogen generation that takes place inside the battery (known as hydrolysis) sucked away about 50 percent of the battery’s energy, making it too inefficient to be useful.

Narayan and his team managed to reduce the energy loss down to 4 percent—making iron-air batteries that are about 10 times more efficient than their predecessors. The team did it by adding very small amount of bismuth sulfide into the battery. Bismuth (which happens to be part of the active ingredient in Pepto-Bismol and helps give the pink remedy its name) shuts down the wasteful hydrogen generation. Adding lead or mercury might also have worked to improve the battery’s efficiency, but wouldn’t have been as safe, Narayan says. “A very small amount of bismuth sulfide doesn’t compromise on the promise of an eco-friendly battery that we started with,” he adds.

The California Renewable Energy Resources Act, signed into law by Gov. Jerry Brown in April 2011, mandates that the state’s utilities must generate 33 percent of their power from renewable energy sources by the end of 2020. This aggressive push toward renewable energy sources presents utilities with a problem: solar power works great on clear days and wind power is wonderful on windy days, but what can they do when it’s cloudy and calm out? People still need electricity, and won’t wait for the clouds to clear to turn the lights on. Currently, solar and wind power make up a relatively small part of the energy used in California. In 2009, 11.6 percent of electricity in the state was generated by wind, solar, geothermal, biomass and small hydroelectric plants combined. (Large hydroelectric plants accounted for an additional 9.2 percent.) As such, dips in energy generation from solar and wind power plants can be covered by the more predictable coal-burning grid.

As California moves toward more renewable energy, solar- and wind-power plants will need an effective way of storing large amounts of energy for use during clouding and calm days. Traditionally, utilities store power by pumping water uphill into reservoirs, which can then release the water downhill to spin electricity-generating turbines as needed. This method is not always practical or even feasible in drought-ridden California, where water resources are already in high demand and open reservoirs can suffer significant losses due to evaporation, Narayan says. Batteries have typically not been a viable solution for utilities. Regular sealed batteries, like the AAs in your TV remote, are not rechargeable. Lithium-ion batteries used in cell phones and laptops, which are rechargeable, are at least 10 times as expensive as iron-air batteries. Despite his success, Narayan’s work is still ongoing. His team is working to make the battery store more energy with less material.

[Collaborators include additional researchers from USC and Andrew Kindler of NASA’s Jet Propulsion Laboratory at Caltech. Funding for this research came from the Advanced Research Projects Agency for Energy, an arm of the US Department of Energy.]

Sri R. Narayan
email : srnaraya [at] usc [dot] edu

Danielle Fong
email : Dani.Fong [at] gmail [dot] com

An early drawing of the first prototype built by Danielle Fong and LightSail — a device that uses excess electrical power to compress and store large amounts of air in a small space. This compress air can then be used to generate energy when it’s actually needed. According to LightSail, the prototype can reproduce about 70 percent of the energy put in to it.
View the full diagram

World’s Most Wired Steam Punk
by Caleb Garling / 07.02.12

Danielle Fong was 12 years old when her mother decided she should go to college. Danielle’s teachers didn’t agree. Though an aptitude test put her above 99 percent of students who had already graduated from high school, her teachers said the move to college would ruin her education. But her mother sent her anyway. “Why would I conceivably put my child through six more years of that bullshit?” remembers Danielle’s mother, Trudy Fong, who was 15 when she herself went to college. “I didn’t bring my kid into the world to have her tortured — and be treated like dirt for being brilliant.”

Little more than a decade later — after graduating from Canada’s Dalhousie University and then dropping out of the Ph.D. program at the Princeton plasma physics lab when she decided academic research was as broken as grade school — Danielle Fong is the chief scientist and co-founder of a company called LightSail Energy. Based in Berkeley, California, this tiny startup is built on an idea that’s as unorthodox as Fong’s education. LightSail aims to store the world’s excess energy in giant tanks of compressed air. The goal is to plug these tanks into wind and solar farms, so that they can squirrel away energy for times when it’s most needed, much like reservoirs store rain water. The wind and the sun are prime sources of renewable energy, but they generate power unpredictably. LightSail’s compressed air tanks, Fong and company say, will make the power grid that much more efficient — and ultimately make the world a greener place.

In 2010, Danielle Fong and LightSail took their compressed air storage idea to the U.S. Department of Energy’sAdvanced Research Projects Agency, seeking a grant for their work. The agency turned them away, saying she and her team were unfit to manage a company, that the idea wouldn’t work anyway, and that her air compressor would likely explode. But like her mother, Danielle didn’t listen. Backed by $15 million in funding from green-minded venture capital outfit Khosla Partners and with a team of 32 employees, LightSail is pushing ahead with its plan to reinvent the power grid. Fong believes the potential market for compressed air tanks will exceed $1 trillion over the next 20 years. “People get skittish,” says Fong, who is now all of 24. “If you have your own resources and have a real effort, it doesn’t matter what the rest of the world thinks, in its knee-jerk, fight-or-flight response.”

In a way, Fong is going back to the future. Compressed air tanks have been used to store energy as far back as the late 19th century. They were installed in cities across the globe, from Paris to Birmingham, England to Buenos Aires. Germany has been using the technology for the past 30 years, and a power company in Alabama opened a facility in 1991. The idea is a simple one: If you have a power source — whether it’s gas or coal or renewable sources such as wind — you can use the energy to cram air into a tank. When the air compresses, it heats up, as we all know from high school physics — or just from pumping up a bicycle tire. Then, when you need the energy at some point down the road, this stored heat can be turned back into power. It’s a bit like coiling and releasing a spring. The rub is that you lose power with each transfer, and you lose heat when the air is in storage. Because it’s less than efficient, compressed air storage never caught on in a big way. Current systems often lose more than 50 percent of the power originally put into them, since they use the released energy to run a generator — which only loses more power.

Since the 1700s, scientists have struggled to store energy in more efficient ways, working to refine everything from Galvanic fuel cells to modern-day batteries. The question is always the same: How do we build a system that lets us storage energy and then retrieve almost all of it? But Steve Crane — LightSail’s CEO and a geophysics Ph.D. — says Danielle Fong has cracked at least part of the code. “It’s a little arrogant to put it this way,” he says, “but I think that Danielle has succeeded where Edison and others have failed.” The trick? Fong added water. LightSail’s prototype sprays a dense mist into the compressed air tanks, and this absorbs the heat produced during compression. Water can store heat far more efficiently than air, and with this mist, Fong says, the prototype more easily stores and releases power. It heats up the tanks to temperatures that are only about 10 to 20 degrees warmer than the environment, as opposed to several thousand degrees. The tanks are still pressurized to about 3,000 pounds per square inch — and Fong hopes to increase that amount — but since the power is stored at lower-temperatures, it’s easier to insulate the tanks. Some compressed air storage systems sit deep underground, taking advantage of the earth’s natural insulation, but LightSail’s tanks sit above ground, which is less costly. When you want the heat back, you just reverse the process, spraying the warm water out of the compression tank as the air expands, and it drives a piston to reproduce the power. But in both storing the heat and spitting it out, you need just the right amount of water. LightSail has tested nearly 40 nozzle heads — not to mention various tank designs — in an effort to achieve just the right mix. According to Fong, her system doubles the efficiency of compressed air, from about 35 percent to roughly 70 percent.

You might think of Danielle Fong as a real-life incarnation of Steampunk, that science-fiction literary genre that re-imagines Victorian technology in a post-apocalyptic future. The difference is that her prototype isn’t fiction. Fong’s original plan was to put her tanks into cars. She holds up Elon Musk, the founder of electric car pioneer Tesla, as a role model. “He was willing to go all out,” she says. But rather than equip cars with combustable engines or rechargeable batteries, LightSail planned to fill them with compressed air. The hot air would drive the pistons in a new breed of automobile engine. But after a nudge from their backers, Fong and team decided that — whatever Musk has accomplished with Tesla — convincing old-school automakers to put these tanks into their vehicles was an almost insurmountable task. So she chose another almost insurmountable task: Reinvent the power grid.

The world is already moving to renewable energy sources such as wind and solar farms. But these don’t produce a steady stream of power. Some days you have sun, and some days you don’t. Plus, more power is typically consumed at night, when solar farms are no longer generating energy, so you need an efficient way of storing it. Fong envisions a power grid that behaves more like the internet, where resources are evenly distributed across the world and they can be readily accessed whenever they’re needed. Yes, the grid is fundamentally designed to distribute power to places of need, and we have “peaking plants” that only operate when additional power is required. But Fong hopes to provide a level of efficiency the world has never seen, especially in large countries like India and China, where power grids are less developed. “It dramatically makes it easier and more economical to do a network this way,” she says, “rather than in a way where your expensive assets have to be designed for the peak anticipated loads over the next 20 years.”

Is this doable? According to Samir Succar, a researcher at Princeton University’s Environmental Institute, compressed air storage could indeed improve the efficiency of wind and solar farms and other less-than-predictable energy sources. But he points out that wind and solar power still accounts for only a small portion of the power grid, and that compressed air doesn’t make sense for more traditional — and more predictable — sources such as coal and gas. “We just don’t have penetration rates that would require energy storage right now,” he says. What’s more, he says, power companies have little incentive to build energy storage centers — whether they use compressed air or some other technology. According to Succar, the power giants prefer to invest in technologies with a proven history, such as natural gas. What’s more, because compressed air can mean so many different things, it can be difficult for these companies to understand which technologies are the most efficient.

Tom Zarella — CEO of a competing compressed air outfit, SustainX — agrees that no matter how effective the hardware built by LightSail or his own company, the task ahead is immense. While some are pushing for greener forms of energy, the political and economic barriers aren’t exactly coming down. According to both Zarella and Fong, the collapse of solar outfit Solyndra — after it had won a $535 million U.S. loan guarantee — soured investors and turned the political discourse against alternative energy efforts. “The moment of ‘Me Too!’ investing in clean energy — where people believe it is easy — is over,” Fong says. “We realize that.” But she says there are some basic realities that will float LightSail to the top: air is free, and it’s everywhere. Any country can use it without depending on another. She says that some of the company’s initial targets include Third World countries, isolated towns and islands that operate without power grids and depend on diesel generators and other local power sources. Much of the wattage generated by these sources is wasted, she says, and her compressed air tanks can turn things around. But she’s eying the United States as well. The Department of Energy’s National Renewable Energy Laboratory recently released a report saying about 75 percent of the United States is suited to compress air storage because it could accommodate buried tanks. But Fong doesn’t need to bury hers. She can put them anywhere. “We know we can sell as many of these as we can make,” she says, insisting that by 2015, her company will be growing threefold every year. “This has never been achieved in any industrial setting. At all. But there’s no other possible energy storage solution that can do that. And if we don’t do it, pretty solid models about the climate — and the way the economy is going to go and what people will do with coal plants — will fuck the world.” Some may doubt whether all this will happen. And others may doubt whether Danielle Fong has the right plan to deal with it. But she’s used to that.


Second day of blackouts leaves nearly 10 percent of humanity without power
by Philip Bump / 31 Jul 2012

This is not a repeat from yesterday. It is worse. For the second day in a row, power consumption in India vastly exceeded available supply, due in part to high temperatures. The result: grid failure that first struck the northern part of the country — which had the same issue yesterday — then, the eastern. Reuters suggests that the outage affected 670 million people — 9.5 percent of all people on Earth. For nearly four hours, power and transportation systems in the nation’s capital were at a standstill, forcing hospitals and “VIP zones” to rely on generator backups. From the Pittsburgh Post-Gazette:

Hundreds of trains stalled across the country and traffic lights went out, causing widespread traffic jams in New Delhi. Electric crematoria stopped operating, some with bodies half burnt, power officials said. Emergency workers rushed generators to coal mines to rescue miners trapped underground.

At least 46 of the 200 trapped miners have since been rescued.

That coal miners were trapped is not without irony. The root of India’s electricity problem, exposed by surging demand in high temperatures, is that a wobbly infrastructure is combined with too little generation. A business trade group puts the blame for generation issues specifically on “the nonavailability of coal.” As we noted last week, the quality of India’s domestic coal is largely too poor for recent-generation coal plants.

The Times’ Andy Revkin has a good round-up of deeper explanations for the power failures, further explaining the link between India’s power problems and its coal problems. He cites theWall Street Journal, which blames environmental regulations:

More than half of India’s power-generation capacity of 205 gigawatts is coal-based, and Coal India Ltd., the world’s biggest coal producer, is unable to produce enough owing to delays in getting environmental clearances for mining. Meanwhile, government giveaways in the form of free electricity to farmers and a reluctance among politicians to raise power tariffs to sufficiently cover costs have drained cash reserves from the largely state-run electricity-distribution companies, leaving them with mounting debt and hampered ability to purchase power.

But again, it’s not clear that mining more coal would solve the country’s problems. If generation facilities can’t use the coal, there’s not much point in sending more people down to retrieve it.

[For more on the power outage (which is now largely resolved): The BBC has a good gallery of images. The Times of India is running a liveblog.]


A man cleans panels installed at a solar plant at Meerwada village of Guna district in the central Indian state of Madhya Pradesh June 18, 2012. Life in the remote Indian village of Meerwada used to grind to a standstill as darkness descended. Workers downed tools, kids strained to see their school books under the faint glow of aged kerosene lamps and adults struggled to carry out the most basic of household chores. The arrival of solar power last year has changed all that. On a humid evening splashed with rain, fans whirr, children sit cross-legged to swat up on their Hindi and delighted people can actually see what they are eating and drinking. REUTERS-Adnan Abidi

Off-grid power shines in India solar village
by Jo Winterbottom  /  Aug 1, 2012

Life in the remote Indian village of Meerwada used to grind to a standstill as darkness descended. Workers downed tools, kids strained to see their schoolbooks under the faint glow of aged kerosene lamps and adults struggled to carry out the most basic of household chores. The arrival of solar power last year has changed all that. On a humid evening, fans whirr, children sit cross-legged to study their Hindi and mother-of-seven Sunderbai is delighted people can actually see what they are eating and drinking. “When it was dark, we used to drink water with insects in, but now we can see insects, so we filter it and then drink,” said the 30-year-old, whose flame-orange sari and gold nose ring are small defiances in a life close to the poverty line.

Children watch television powered by solar energy at Meerwada village of Guna district in the central Indian state of Madhya Pradesh June 18, 2012. REUTERS-Adnan Abidi

Meerwada, on a dirt track rutted by rains and outside the reach of the national grid, struck lucky when U.S. solar firm SunEdison picked it to test out business models and covered the hefty initial expense of installing hi-tech solar panels in the heart of the village. But rapidly falling costs and improved access to financing for would-be customers could encourage the spread of such systems down the line, while simpler solar schemes are already making profits in areas where the grid either does not extend or provides only patchy power. And Asia’s third-largest economy, where just this week hundreds of millions were left without electricity in one of the world’s worst blackouts, needs all the help it can get in easing the strain on its overburdened power infrastructure. The country’s Ministry of New and Renewable Energy (MNRE) hopes solar systems that bypass the national grid will account for just under one percent of total installed capacity by 2022. Still a mere flicker, but that 4,000-megawatt (MW) goal would be way up from 80 MW now when so-called off-grid solar systems are still out of reach for most of the country’s rural poor.

Large-scale solar facilities that directly feed the grid, such as those at an over 600 MW solar park recently launched with great fanfare in Gujarat, have been gaining traction for some time. But potential growth in off-grid solar power offers a ray of hope to the around 40 percent of India’s 1.2 billion population that the renewable power ministry estimates lack access to energy. People like those in the village just 200 meters away from Meerwada, who rely on a hand pump for water and cook by torchlight as hungry goats creep up on them out of the gloom. Covering initial investment on solar is key as, in a country with around 300 days of sunshine a year, subsequent costs are largely limited to maintenance and repairs. “The high up-front capital cost is one of the adoption barriers (for solar projects),” said Krister Aanesen, associate principal at McKinsey & Company’s renewable energy division. “Although diesel is more expensive on a full-cost basis, you defer cash outlay for the fuel … the cash outlays are different and that’s one of the key challenges.”

Small-scale direct current (DC) systems from Karnataka in the south to Assam in the north-east have already cleared that hurdle, supplying simple lights and mobile phone chargers at 100-200 rupees ($1.80-$3.60) per month per light — prices that typically allow installers to cover their initial costs in time. Private company Mera Gao Power fits roof-top solar panels and then transmission to other houses who pay about 40 rupees to connect, with costs thereafter about 25 rupees per week, said Nikhil Jaisinghani, one of the firm’s founders. That means it should currently take about 12 months to repay panel installation expenses of about $2,500 for 100 houses, though the cost is set to fall. Initial expenses are far more onerous on more comprehensive mini-grids like the one in Meerwada, which includes a room full of batteries that can store enough electricity to provide round-the-clock supply to the village and which has recently started powering water pumps. California-based SunEdison reckons it cost $100,000-$125,000 to build the 14 kilowatt (KW) plant in Meerwada, an expense that would have demanded fees way too high for the 400 or so villagers, whose per capita income is about $250 a year.

The firm expects initial capital costs to come down enough to make alternating current (AC) systems affordable in villages like Meerwada in a few years, with improving technology and fierce competition reducing hardware costs, while enhanced battery storage driven by the auto industry’s push on electric cars is also helping. SunEdison, which sells solar power plants and services worldwide to commercial, government and utility customers, has over 50 MW of interconnected solar electricity in India, with projects ranging from small rooftop installations to part of the Gujarat solar park. “Three years ago, the panel price was $2.60 per watt. Today it is 75 cents a watt. I don’t think it will halve in the next few years but I clearly see 50 cents a watt by 2014/15,” said Ahmad Chatila, president and chief executive of MEMC Electronic, SunEdison’s parent company. In the meantime, the government is offering 30 percent of the project cost and in some cases low-interest loans for solar power systems under its Jawaharlal Nehru National Solar Mission policy launched in 2010. But that still means systems are beyond the reach of many poor, rural customers, so some solar companies are putting up the 20 percent deposits on loans required by banks or acting as guarantors for customers who are outside the conventional banking system.

A man stands inside his illuminated house powered by solar energy at Meerwada village of Guna district in the central Indian state of Madhya Pradesh June 18, 2012. REUTERS-Adnan Abidi

Back in Meerwada, which lies in central India’s Madhya Pradesh, the villagers have added an unexpected ingredient to the cost equation — frugality. Lights even now are turned on only when darkness falls and fans target the youngest children and the elderly, saving on power use. Only the village leader, Sampat Bai, has been able to afford a television but it’s open to all and her bare-walled main room is crowded when the latest epic dramas come on screen and the children have finished their homework. Manorbai, a 30-something mother who is now making more money by working at night to mend and sew on her vintage black-and-gold foot-pedal sewing machine, has a simple message on the future. “Our village has power and other villages should too,” she said.


Wilson Solar Grill Stores the Sun’s Energy for Nighttime Fuel-Free Grilling
by Bridgette Meinhold / 08/14/11

Many of us will be firing up our grills this weekend for some well-deserved barbecue time. After all, barbecuing is one of America’s greatest past times, but it certainly isn’t one of our most environmentally friendly. Whether you prefer charcoal, wood chips or propane, grilling releases emissions and contributes to poor air quality. Up until now, solar powered grilling has required, as you might expect, the sun, which means traditional fuel-fired grills are required after sunset. But new solar technology developed by MIT professor David Wilson could bring a nighttime solar-powered grill to the market very soon; an invention also of great benefit to those in developing nations who rely on wood to cook all their food.

Wilson’s technology harnesses the sun and stores latent heat to allow cooking times for up to an amazing twenty five hours at temperatures above 450 degrees Fahrenheit. The technology uses a Fresnel lens to harness the sun’s energy to melt down a container of Lithium Nitrate. The Lithium Nitrate acts as a battery storing thermal energy for 25 hours at a time. The heat is then released as convection for outdoor cooking.
“There are a lot of solar cookers out there,” says Wilson, “but surprisingly not many using latent-heat storage as an attribute to cook the food.” Wilson developed the idea after spending time in Nigeria, where wood is used for cooking, which causes a number of problems. Not only is cooking with firewood leading torespiratory illnesses, but is also increasing the rate of deforestation and women are being raped while searching for wood.

A group of MIT students are working with the technology to develop a prototype solar grill. Derek Ham, Eric Uva, and Theodora Vardouli are conducting a study through their multi-disciplinary course “iTeams,” short for “Innovation Teams”, to determine the interest in such a concept and then hopefully launch a business to manufacture and distribute these grills. The goal is to develop a business model for distributing solar grills to developing nations as well as a grill for the American market. The American version is expected to be a hybrid propane/solar model that will allow for flame cooking as well as through thermal convection.



ion drive

Egyptian Student’s Quantum Physics Invention
by Kit Eaton / 05-21-2012

Remember the name, because you might see it again: Aisha Mustafa, a 19-year-old Egyptian physics student, patented a new type of propulsion system for spacecraft that uses cutting edge quantum physics instead of thrusters. First, a little background: One of the strange quantum facts at work in Mustafa’s engine idea is that there’s no such thing as a vacuum, devoid of particles, waves, and energy. Instead the universe’s supposedly empty spaces are filled with a roiling sea of particles and anti-particles that pop into existence, then annihilate each other in such a short space of time that you can’t readily detect them. Mustafa invented a way of tapping this quantum effect via what’s known as the dynamic Casimir effect. This uses a “moving mirror” cavity, where two very reflective very flat plates are held close together, and then moved slightly to interact with the quantum particle sea. It’s horribly technical, but the end result is that Mustafa’s use of shaped silicon plates similar to those used in solar power cells results in a net force being delivered. A force, of course, means a push or a pull and in space this equates to a drive or engine.

In terms of space propulsion, this is amazing. Most forms of spacecraft rely on the rocket principle to work: Some fuel is made energetic and then thrust out of an engine, pushing the rocket forward. It’s tricky stuff to get right, particularly on Earth, which is why we shouldn’t be surprised SpaceX’s recent launch stopped at the critical moment due to a problem with one of its chemical rocket engines. For in-space maneuvering, many different types of rocket are used, but even exotic ones like ion drives (shown in a NASA image above) need fuel. The only space drive that doesn’t involve hauling fuel and complex systems into orbit is a solar sail. And Mustafa’s invention can, rudimentarily, be compared to a solar sail…because it doesn’t need “fuel” as such, and exerts just the tiniest push compared to the thundery flames of SpaceX’s rockets. It’s potential is enormous–because of its mechanical simplicity and reliability it could make satellite propulsion lighter, cheaper, and thus indirectly lower the cost of space missions of all sorts. And if you want proof that the tiniest of pushes can propel a spacecraft, check this out: Two Pioneer space probes, launched in the 1970s, are the farthest manmade objects from Earth…but they’re not as far away as they should be. Over the course of a year they deviate by hundreds of kilometers from where all our science says they must be in orbit, and it’s been found that it’s down to the tiniest of pushes coming from radiators on-board that radiate heatwaves out slghtly more in one direction than another.

Aisha’s invention is so promising that her university’s staff aided with a patent application. She intends to study the design further in the hope of testing it out for real in space, but as site points out she notes that there’s no funding for a department of space science and this prevents important research being carried out in strife-ridden Egypt.

Aisha Mustafa patented her invention last February in ASRT.

Egyptian Student Invents New Propulsion Method
by Islam Mitsraym  /  16 May 2012

An Egyptian physics student has successfully created a new propulsion device that could accelerate space probes and artificial satellites through quantum physics and chemical reactions instead of the current radioactive-based jets and ordinary rocket engines. Aisha Mustafa, who has entered the active research area of spacecraft propulsion by her newly invented device, told the governmental EGYNews agency that she patented her invention last February in the Egyptian Academy of Scientific Research and Technology (ASRT). Mustafa’s propelling device is based upon a scientific mix between quantum physics, space technology, chemical reactions and electrical sciences. Current space probes, artificial satellites, spacecrafts and space vehicles use rocket gas engines that depend on forcing a gas to the outside of the vehicle at a supersonic speed or the chemical reactions rockets which propel by solid or liquid fuels such as radionuclide or petroleum, or the electrically-propelled probes which depend on thrusting force via accelerating ions.

On the contrary, Mustafa’s invention powers space vehicles by benefiting from the electric energy formed by Casimir-polder force which occurs between separate surfaces and objects in a vacuum and by the zero-point energy which is considered to be the lowest state of energy. Mustafa added that she used panels for generating electricity. The invention is related to a hypothetical concept of a jet propulsion called “Differential Sail”, which was theoretically created by NASA’s retired professor Marc G. Millis who led NASA breakthrough propulsion physics project.

In a televised interview with the famous Egyptian morning programme “Sabah El Kheir Ya Masr” (Good Morning Egypt), Mustafa, who studies physics in Sohag University, expressed her appreciation to her faculty and university staff for their efforts in helping and providing her with the materials and resources needed. Yet, at the same time she expressed her depression and sadness for the lack of a space sciences department in the Egyptian universities. “Departments of astronomy and physics are only available. Although they are related to space sciences but unfortunately they aren’t into the specific field of my invention and they can’t practically test or implement it.” The 19-year old girl said that lacking of a department for space sciences prevents further national research in this important field and acts as an obstacle for her to continue conducting her studies in this specific area.

According to an Egyptian TV channel, “Egypt 25”, Mustafa’s supervisor, Dr. Ahmed Fikry, who heads the physics department in Sohag University, has shown great interest in his student’s invention and helped her patent it in the ASRT. “I expect this invention to be highly beneficial in several fields and areas of industries,” he assured. On his behalf, the President of Sohag University, Dr. Nabil Nour Eldin Abdellah, said that the university facilitates what he called “Science Clubs” for intelligent and creative students who have the will and capabilities to come up with innovative scientific ideas. “Once we knew about her (Mustafa’s) invention, we encouraged her and provided her with the budget needed through the Science Club for innovative students in the university. This is the case with any other creative student,” Abdellah explained.


The scientific field of space vehicles propulsion is astonishingly rocketing and it gains a wider attention worldwide, thanks to its vital importance for other sciences like engineering, astronomy, geology, industry and others. This is in addition to the vast areas of researches it covers and the high probability of brainstorming new creations, methods and creative tools. Events like the retirement of NASA’s vehicle of space shuttle programme and the need for new methods for space travel at a faster, safer, cheaper and easier means pushes forwards conducting more and more researches in the field of space vehicles propulsion. Currently, there are dozens, if not hundreds, of ideas for innovative propulsion systems which are either presently in use or in progress, or which are still eras or even a millennium-far away from our modern technologies. One of these methods for interplanetary and interstellar travels is the “solar sail” which depends on stellar radiation pressure or laser upon ultra-thin mirrors which work like ship sails. Other accelerating methods make use of the fourth state of matter, “plasma” by thrusting and pulsing.

Electromagnetic Catapult in a Lunar settlement

Some other ideas of innovation include “space elevators”, “space launch loops”, “space fountains”, “electromagnetic catapults”, “space chemical guns”, in addition to numerous hypothetical and theoretically-possible methods which need practical confirmations. Mustafa nowadays aims at testing her invention at major scientific research organisations, hence the possibility of applying it in upcoming space missions. In the next coming decades, space travel would be easier, safer, faster and cheaper, thanks to the mind of an Egyptian girl.

Breakthrough Propulsion Physics. NASA. 19th of November 2008.
Glen A. Robertson, P.A. Murad & Eric Davis. New frontiers in space propulsion sciences. 3 December 2007.

A rapidly moving mirror that turns virtual photons into real ones is the first experimental evidence of the dynamical Casimir effect.
by KFC  /  May 26, 2011

“One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence.” So begin Christopher Wilson from Chalmers University in Sweden and friends in their marvellously readable paper about a rather extraordinary piece of science. This maelstrom of quantum activity is far from benign. Physicists have known since 1948 that if two flat mirrors are held close together and parallel with each other, they will be pushed together by these virtual particles. The reason is straightforward. When the gap between the mirrors is smaller than the wavelength of the virtual particles, they are excluded from this space. The vacuum pressure inside the gap is then less than outside it and this forces the mirrors.

This is the static Casimir effect and it was first measured in 1998 by two teams in the US. But there is another phenomenon called the dynamical Casimir effect that has never been seen. It occurs when a mirror moves through space at relativistic speeds. Here’s what happens. At slow speeds, the sea of virtual particles can easily adapt to the mirror’s movement and continue to come into existence in pairs and then disappear as they annihilate each other. But when the speed of the mirror begins to match the the speed of the photons, in other words at relativistic speeds, some photons become separated from their partners and so do not get annihilated. These virtual photons then become real and the mirror begins to produce light.

That’s the theory. The problem in practice is that it’s hard to get an ordinary mirror moving at anything like relativistic speeds. But Wilson and co have a trick up their sleeves. Instead of a conventional mirror, they’ve used a transmission line connected to a superconducting quantum interference device or SQUID. Fiddling with the SQUID changes the effective electrical length of the line and this change is equivalent to the movement of an electromagnetic mirror. By modulating the SQUID at GHz rates, the mirror moves back and forth. To get an idea of scale, the transmission line is only 100 micrometres long and the mirror moves over a distance of about a nanometre. But the rate at which it does this means it achieves speeds approaching 5 per cent light speed. So having perfected their mirror moving technique, all Wilson and co have to do is cool everything down, then sit back and look for photons. Sure enough, they’ve spotted microwave photons emerging from the moving mirror, just as predicted. They finish with a short conclusion. “We believe these results represent the fifirst experimental observation of the dynamical Casimir effect.” Impressive result!

Ref: Observation of the Dynamical Casimir Effect in a Superconducting Circuit

Dyckovsky’s bedside table — the spoils of teenage quantum research. {photo: Brendan Hoffman}

by Cade Metz   /  6/12

Ari Dyckovsky was 15 when a Bose-Einstein condensate hit him right between the eyes. It didn’t really hit him between the eyes. That’s just a metaphor. But metaphors are thoroughly appropriate when you’re discussing a trip from the suburbs of Washington, D.C., into that alternate universe known as quantum mechanics. When he was 15, Dyckovsky sat down to watch a PBS documentary that culminated with a group of physicists creating a new form of matter called the Bose-Einstein condensate, or BEC. First predicted in the 1920s by Albert Einstein and an Indian scientist named Satyendra Bose, BEC isn’t a solid or a liquid or a gas. It’s not even a plasma. Existing only at extremely low temperatures, where it exhibits the seemingly magical properties of quantum mechanics, BEC is something different — a group of atoms that act like a single super atom, particles that behave like waves. Sitting in his home in Leesburg, Virginia, about 30 miles west of D.C., Dyckovsky was intrigued by the counter-intuitive nature of the quantum world. But he was also struck by the idea of spending a lifetime building something the world had never seen. That Bose-Einstein condensate hit him so hard, he decided that quantum physics was the life for him too. No doubt, there are countless other teenagers who decide much the same thing. But Ari Dyckovsky took the express route.

Dyckovsky is now 18, and his paper on another mind-bending aspect of the quantum world — quantum entanglement — was just published by Physical Review A, one of the world’s leading physics journals. Co-authored with Steven Olmschenk — a researcher with the Joint Quantum Institute, a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland at College Park — the paper breaks new ground in the ongoing effort to build a quantum computer, so often called the holy grail of technology research. “Yes, he’s very young, but he’s the first author on that publication and rightfully so,” Olmschenk says. “All of the brute force calculations and things like that — Ari did most of it, if not all of it.” The paper — a theoretical analysis of how two distant and very different particles can be entangled with light — is about 90 percent brute force calculation.

The publication is no surprise to Ari’s mother, Amy Dyckovsky. She traces his quantum ambitions all the way back to a cross-country car ride the family took when he was little more than 3 years old, moving from California to Virginia. At an age when most children are still learning to put words together, Ari sat in back seat solving math problems tossed out by his father, a market researcher and high-tech exec with a degree in economics and a Yale MBA. In the beginning, the games were simple — addition and subtraction — but they quickly progressed into multiple-digit multiplication and the square roots of very large numbers. They continued through elementary school, Ari says, and they soon morphed into something akin to physics. “I would get bored at school, but when I got home, he would make me these math worksheets … algebraic word problems,” he says. “After a while, they became less about math and more about how would you use math to describe something, to show what’s going on. That’s what physics is.” But there’s not a direct line to that PBS documentary. Ari’s rather accelerated education slowed when he was 9. His father died after an unexpected heart attack, at the age of 47, and as Ari tells it, his interest in education of any kind almost dried up completely. “He took a serious downward spiral,” his mother says. “We all did.” This continued for years. “I lost hope in many ways, especially when it came to my education. I immediately adopted the notion that my education was no longer important without my father,” Ari says. “For two weeks, I refused to leave the house, and I was finally forced to attend school. I was not happy about it. It really was a major setback.”

Ari credits his grandfather — his mother’s father — with reviving what had been a natural curiosity. “School was very easy for me, even after I lost interest,” Dyckovsky says. “But my grandfather kept telling me to look at it in a different way. He told me that an A meant nothing. I was dumbfounded. But he told me that wasn’t the best you could get — not even close. It took me a while. But eventually, I figured it out.” As a young teenager, after a nudge from his mother, he was accepted at the Loudoun County Academy of Science in Sterling, Virginia, a selective, part-time high school for promising science and math students. But in some ways, he outgrew this as well. After that BEC hit him between the eyes, he taught himself the basic tenets of quantum mechanics, and when he reached his limits there, he emailed about 70 university professors and researchers, asking if they would help take him further. Only one responded: Steven Olmschenk at NIST. Originally, Olmschenk was little more than a teacher. But eventually, their relationship morphed into a collaboration, and it was only natural that their research would settle on quantum entanglement, the subject of Olmschenk’s Ph.D. thesis.

Recently published in the academic journalPhysical Review A, Ari Dyckovsky’s paper on quantum entanglement is titled “Analysis of Photon-Mediated Entanglement Between Distinguishable Matter Qubits.”. But for those who have shorter attention spans but retain a thirst for quantum mechanics, Dyckovsky has also put together a poster presentation.

First explored in the mid-1930s by Einstein and others, quantum entanglement is a way of linking together two particles that are physically isolated. In our world — the world of classical physics — this is counter-intuitive. But in the quantum world, it’s a very real phenomenon. In essence, if the quantum properties of one particle are altered, a change happens in the other particle. “Separate observations of the two quantum objects are random, but when observed together, their states are correlated. Basically, measuring the state or information in one of the objects will necessarily determine what state is measured in the other object,” Dyckovksy says. He uses two coins as a metaphor. If you and a friend each flip a quarter, he explains, the result of each flip is completely random. But with quantum entanglement, it’s as if the result of one flip is always the same as the other — no matter how far apart you and your friend are standing. In the mid-90s, an IBM researcher named Charles Bennett showed that this sort of entanglement could be used to send information between two quantum objects — such as atoms or quantum dots (artificial atoms). He called it quantum teleportation — “It’s a metaphor,” Bennett says. “It has nothing to do with what you see in Star Trek, but it makes you think of that” — and it’s a key part of the race to build a quantum computer, a machine that could use these same very small particles to achieve speeds well beyond today’s classical computer.

Quantum teleportation would let you move information from one part of a quantum computer to another. The trouble, says Bennett, is that it faces “tremendous barriers” if it can ever be used outside the lab. With his paper, Ari Dyckovsky has helped show that you can have quantum entanglement with vastly different particles, not just particles that are similar. “Nearly all the past and even most current research has looked at the remote or long-distance entanglement of indistinguishable quantum memories — such as two identical atoms or ions,” Dyckovsky says. “We extend the current knowledge to not only include entanglement between identical sources, but entanglement with two sources that are very different.” This is so useful because different particles are suited to different parts of a quantum machine. Some are suited to the equivalent of memory, others the equivalent of a processor. “It’s very important to transfer qubits — quantum data — from one physical form to another, like from the state of a photon to the state of an ion to the state of a nuclear spin to the state of a quantum dot,” Bennett says. “There are dozens of systems that have been proposed for the storage of quantum information. The more expertise we get in moving information from one of these forms to another, the closer we’ll be to building a working quantum computer.”

As Dyckovsky points out, since quantum entanglement can be achieved over long distances, his research could also be used to build a new form of secure communication. “You could use this entanglement scheme to link an ion and a quantum dot, which can be used to perform a teleportation protocol that allows quantum information to be transferred,” he says. “A government agency could use this for message transfer and no eavesdroppers could intercept the message because none of the sensitive info actually traverses the distance.” Dyckovsky’s paper is just one step along the road to quantum teleportation and, ultimately, the quantum computer. But it’s a step. His research has not only earned him a place in Physical Review A, it has won him a $50,000 college scholarship from the Intel Foundation and a spot in this fall’s freshman class at Stanford University. But those are merely the measurements in the classical world. He’s gone much further in the quantum world.



Genetically engineered virus has electrical poles at each end that generate a voltage potential when deformed. {Source: Lawrence Berkeley National Labs}

by Mellisae Fellet /  May 15 2012

Squishing a stack of virus sheets generates enough electricity to power a small liquid crystal display. With increased power output, these virus films might one day use the beating of your heart to power a pacemaker, the researchers behind them say. Piezoelectric materials build up charge when pushed or squeezed. These materials may be familiar to you: they generate the spark in a gas lighter, and motors powered by such materials vibrate some cell phones. Piezoelectric materials made of metals or polymers require large inputs of energy to build up a charge. Bone, DNA, and protein fibers are weakly piezoelectric, but it’s hard to efficiently organize these materials on a large scale to yield electricity.To handle this organizational issue, Seung-Wuk Lee, of the University of California in Berkeley and the Lawrence Berkeley National Laboratory, and his colleagues looked for a biomaterial that had intrinsic order and was easy to make. They settled on the M13 bacteriophage, a rod-shaped virus that only infects bacteria. One bacterium can produce one million copies of the virus within four hours, so starting material isn’t a problem. And the virus neatly arranges itself in stacked rows when spread on a surface.

The researchers first tested the virus to see if it was piezoelectric. Instead of pushing on the virus and measuring a current, they looked for the opposite effect. They electrified a film made with the virus and watched for mechanical motion. The scientists saw the helical proteins covering the virus twist. To understand why the virus is piezoelectric, we need to look at its structure. About 2700 copies of a helical protein stretch along the length of the virus, tipping out from that central axis about 20°. Each helix has a positively charged end and a negatively charged end. The amount of this charge difference and the distance between the two charged areas sets up an electric dipole, which runs along each helix.


A closeup of the virus’ coat proteins. The red end is the positively charged end of the protein. The negatively-charged blue end was engineered to contain four extra negative charges. The M13 bacteriophage has a length of 880 nanometers and a diameter of 6.6 nanometers. It’s coated with approximately 2700 charged proteins that enable scientists to use the virus as a piezoelectric nanofiber. 


Normally these dipoles cancel each other out because the proteins are symmetrically arranged around the outside of the virus—the amount of negative charge around the virus surface balances out the amount of positive charge. But when the virus is squished from above, its rod shape elongates into an oval, and the dipole moments become uneven. One area of the virus coat can now hold negative charges while another builds positive charge. Establishing that charge difference causes current to flow along the virus. Since the structure of the coat proteins is well known, the researchers engineered the virus to increase its piezoelectric properties. They added four extra negatively charged amino acids, specifically a string of glutamates, to one end of the helical surface protein. That increased the charge difference between the positive and negative ends of the helix, thus raising the amount of electrical energy it produced when squished. Next, the scientists sandwiched sheets of engineered virus between two gold electrodes about the size of a postage stamp. When pushed with a thumb, the virus stack produces 6 nA of current with 400 mV of potential. That’s about one-quarter the voltage of an AAA battery. Combining two of these stacks provides enough energy to bring up a “1” on a small liquid crystal display.

Lee is working to increase the amount of current that these viral particles can produce by tweaking the viral coat proteins and playing with their arrangement on the electrode surface. In five to ten years, he estimates, viral piezoelectric films in your shoes could be personal electricity generators to power your iPod as you run. Or they could use the thumping of your heart to power a pacemaker, Lee says. Though the current produced now is small because only a thin layer of the virus deforms, virus-based devices could still be useful for small scale applications, writes S. Michael Yu, of Johns Hopkins University, in the News and Views article accompanying the paper. This flexible film has a “self-assembling capability that no other piezoelectric materials can even dream about,” he writes. That reliable self-organization forms tidy structures gives the material its piezoelectric activity, Yu writes.

Nature Nanotechnology, 2012. DOI: 10.1038/nnano.2012.69


Pressing a virus-filled device can generate power. The gloves protect the virus, which only infects bacteria, from us.

Berkeley Lab Scientists Generate Electricity From Squeezing Viruses;siu-container
by Dan Krotz  /  May 13, 2012

Imagine charging your phone as you walk, thanks to a paper-thin generator embedded in the sole of your shoe. This futuristic scenario is now a little closer to reality. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to generate power using harmless viruses that convert mechanical energy into electricity. The scientists tested their approach by creating a generator that produces enough current to operate a small liquid-crystal display. It works by tapping a finger on a postage stamp-sized electrode coated with specially engineered viruses. The viruses convert the force of the tap into an electric charge. Their generator is the first to produce electricity by harnessing the piezoelectric properties of a biological material. Piezoelectricity is the accumulation of a charge in a solid in response to mechanical stress. The milestone could lead to tiny devices that harvest electrical energy from the vibrations of everyday tasks such as shutting a door or climbing stairs.

It also points to a simpler way to make microelectronic devices. That’s because the viruses arrange themselves into an orderly film that enables the generator to work. Self-assembly is a much sought after goal in the finicky world of nanotechnology. The first part of the video shows how Berkeley Lab scientists harness the piezoelectric properties of a virus to convert the force of a finger tap into electricity. The second part shows the “viral-electric” generators in action, first by pressing only one of the generators, then by pressing two at the same time, which produces more current. “More research is needed, but our work is a promising first step toward the development of personal power generators, actuators for use in nano-devices, and other devices based on viral electronics,” says Seung-Wuk Lee, a faculty scientist in Berkeley Lab’s Physical Biosciences Division and a UC Berkeley associate professor of bioengineering. He conducted the research with a team that includes Ramamoorthy Ramesh, a scientist in Berkeley Lab’s Materials Sciences Division and a professor of materials sciences, engineering, and physics at UC Berkeley; and Byung Yang Lee of Berkeley Lab’s Physical Biosciences Division.

The first part of the video shows how Berkeley Lab scientists harness the piezoelectric properties of a virus to convert the force of a finger tap into electricity. The second part shows the “viral-electric” generators in action, first by pressing only one of the generators, then by pressing two at the same time, which produces more current.

The piezoelectric effect was discovered in 1880 and has since been found in crystals, ceramics, bone, proteins, and DNA. It’s also been put to use. Electric cigarette lighters and scanning probe microscopes couldn’t work without it, to name a few applications. But the materials used to make piezoelectric devices are toxic and very difficult to work with, which limits the widespread use of the technology. Lee and colleagues wondered if a virus studied in labs worldwide offered a better way. The M13 bacteriophage only attacks bacteria and is benign to people. Being a virus, it replicates itself by the millions within hours, so there’s always a steady supply. It’s easy to genetically engineer. And large numbers of the rod-shaped viruses naturally orient themselves into well-ordered films, much the way that chopsticks align themselves in a box. These are the traits that scientists look for in a nano building block. But the Berkeley Lab researchers first had to determine if the M13 virus is piezoelectric. Lee turned to Ramesh, an expert in studying the electrical properties of thin films at the nanoscale. They applied an electrical field to a film of M13 viruses and watched what happened using a special microscope. Helical proteins that coat the viruses twisted and turned in response—a sure sign of the piezoelectric effect at work.

The bottom 3-D atomic force microscopy image shows how the viruses align themselves side-by-side in a film. The top image maps the film's structure-dependent piezoelectric properties, with higher voltages a lighter color.
The bottom 3-D atomic force microscopy image shows how the viruses align themselves side-by-side in a film. The top image maps the film’s structure-dependent piezoelectric properties, with higher voltages a lighter color.

Next, the scientists increased the virus’s piezoelectric strength. They used genetic engineering to add four negatively charged amino acid residues to one end of the helical proteins that coat the virus. These residues increase the charge difference between the proteins’ positive and negative ends, which boosts the voltage of the virus. The scientists further enhanced the system by stacking films composed of single layers of the virus on top of each other. They found that a stack about 20 layers thick exhibited the strongest piezoelectric effect. The only thing remaining to do was a demonstration test, so the scientists fabricated a virus-based piezoelectric energy generator. They created the conditions for genetically engineered viruses to spontaneously organize into a multilayered film that measures about one square centimeter. This film was then sandwiched between two gold-plated electrodes, which were connected by wires to a liquid-crystal display. When pressure is applied to the generator, it produces up to six nanoamperes of current and 400 millivolts of potential. That’s enough current to flash the number “1” on the display, and about a quarter the voltage of a triple A battery. “We’re now working on ways to improve on this proof-of-principle demonstration,” says Lee. “Because the tools of biotechnology enable large-scale production of genetically modified viruses, piezoelectric materials based on viruses could offer a simple route to novel microelectronics in the future.”


by Phil McKenna / March 2012

A fuel cell powered by naturally occurring bacteria has successfully converted 13 per cent of the energy in sewage to electricity – and cleaned the waste water at the same time. It’s hoped genetic engineering could make this much more efficient. Treating sewage and other liquid waste uses roughly 2 per cent of the US energy supply, at a cost of $25 billion a year, yet this carbon-rich material harbours nine times the energy needed to render it environmentally benign. Microbiologists believe they can drastically cut the cost and power consumption by using genetically modified bugs to treat the waste and produce electricity. “It’s a substantial energy resource that we just end up landfilling,” saysOrianna Bretschger, of the J. Craig Venter Institute in San Diego, California. “If we could recover the energy we could do waste water treatment for free.” Bretschger described a 380-litre microbial fuel cell at a meeting of the American Chemical Society in San Diego this week. It uses naturally occurring microbes to break down organic waste and produce electrons and protons. The electrons are collected by an anode while the protons pass through a permeable membrane to a cathode. The resulting voltage between the two electrodes enables the fuel cell to produce an electric current.

Major improvement
The announcement represents a significant improvement over the institute’s earlier fuel cell, a 75-litre device able to harvest only 2 per cent of the waste’s potential energy. Further improvements will be needed, however, for the technology to compete with conventional waste water treatment techniques, which can rapidly process huge volumes of water. By genetically modifying microbes to enhance their ability to consume organic waste, and better shuttling electrons to an electrode, Bretschger hopes to harvest 30 to 40 per cent of the available energy. Genetically modified organisms aren’t currently used in either municipal or commercial waste water treatment facilities. Their potential use in a fuel cell would be regulated in the US by the Environmental Protection Agency (EPA), which has yet to determine how to govern such applications.

Natural competition
Conventional waste water treatment, however, already has ways of killing microbes before water gets back into the environment, including the use of chlorine, ozone and ultraviolet light. The EPA also recently granted permission for a pilot study in which genetically modified microbes were used as tracers to find leaks from sewers. Roland Cusick, an environmental engineer at Pennsylvania State University in University Park, says genetically engineered microbes may boost efficiency, but it may be difficult to control the bug population. “Waste water has millions of microbes in it. Any time you are adding waste water, you are adding competition to your system,” Cusick says.



Bacteria, Salt Water Make Hydrogen Fuel
by Jesse Emspak / Sep 21, 2011

The ‘hydrogen economy’ requires a lot of things, but first is an easy and cheap supply of hydrogen. There are lots of ways to make it, but most of them don’t produce large quantities quickly or inexpensively.  Professor Bruce Logan, director of the Hydrogen to Energy Center at Penn State University, has found a way to change that. He used a process called reverse electrodialysis, combined with some ordinary bacteria to get hydrogen out of water by breaking up its molecules. Water — which is made of two atoms of hydrogen and one of oxygen — can be broken down with electricity. (This is a pretty common high school science experiment). The problem is that you need to pump a lot of energy into the water to break the molecules apart.

Logan thought there had to be a better way. He combined two methods of making electricity — one from microbial fuel cell research and the other from reverse electrodialysis. In a microbial fuel cell, bacteria eat organic molecules and during digestion, release electrons. In a reverse electrodialysis setup, a chamber is separated by a stack of membranes that allow charged particles, or ions, to move in only one direction. Filling the chamber with salt water on one side and fresher water on the other causes ions to try and move to the fresher side. That movement creates a voltage. Adding more membranes increases the voltage, but at a certain point it becomes unwieldy. By putting the bacteria in the side of the reverse electrodialysis chamber with the fresh water, and using only 11 membranes, Logan was able to generate enough voltage to generate hydrogen. Ordinarily he would need to generate about 0.414 volts. With this system, he can get .8 volts, nearly double. (The microbial part of the cell generates 0.3 volts and the RED system creates about 0.5.)

Using seawater, some less salty wastewater with sewage or other organic matter in it and the bacteria, Logan’s apparatus can produce about 1.6 cubic meters of hydrogen for every cubic meter of liquid through the system of chambers and membranes. Another bonus is that less energy goes into pumping the water — if anything, flow rates and pressure have to be kept relatively low so as not to damage the membranes.  Making hydrogen cheaper is a necessity if hydrogen cars are to be a reality. Some car companies already make hydrogen-powered models. The state of Hawaii is already experimenting with hydrogen fuel systems. Producing cheaper, abundant hydrogen — especially from sewer water and seawater — is a big step in that direction.

Harvesting ‘limitless’ hydrogen from self-powered cells
by Mark Kinver / 20 September 2011

US researchers say they have demonstrated how cells fueled by bacteria can be “self-powered” and produce a limitless supply of hydrogen. Until now, they explained, an external source of electricity was required in order to power the process. However, the team added, the current cost of operating the new technology is too high to be used commercially. Details of the findings have been published in the Proceedings of the National Academy of Sciences.

“There are bacteria that occur naturally in the environment that are able to release electrons outside of the cell, so they can actually produce electricity as they are breaking down organic matter,” explained co-author Bruce Logan, from Pennsylvania State University, US. “We use those microbes, particularly inside something called a microbial fuel cell (MFC), to generate electrical power. “We can also use them in this device, where they need a little extra power to make hydrogen gas. “What that means is that they produce this electrical current, which are electrons, they release protons in the water and these combine with electrons.”

Prof Logan said that the technology to utilize this process to produce hydrogen was called microbial electrolysis cell (MEC). “The breakthrough here is that we do not need to use an electrical power source anymore to provide a little energy into the system. “All we need to do is add some fresh water and some salt water and some membranes, and the electrical potential that is there can provide that power.” The MECs use something called “reverse electrodialysis” (RED), which refers to the energy gathered from the difference in salinity, or salt content, between saltwater and freshwater.

In their paper, Prof Logan and colleague Younggy Kim explained how an envisioned RED system would use alternating stacks of membranes that harvest this energy; the movement of charged atoms move from the saltwater to freshwater creates a small voltage that can be put to work. “This is the crucial element of the latest research,” Prof Logan told BBC News, explaining the process of their system, known as a microbial reverse-electrodialysis electrolysis cell (MREC). “If you think about desalinating water, it takes energy. If you have a freshwater and saltwater interface, that can add energy. We realized that just a little bit of that energy could make this process go on its own.”

Artistic representation of hydrogen molecules (Image: Science Photo Library)

He said that the technology was still in its infancy, which was one of the reasons why it was not being exploited commercially. “Right now, it is such a new technology,” he explained. “In a way it is a little like solar power. We know we can convert solar energy into electricity but it has taken many years to lower the cost. “This is a similar thing: it is a new technology and it could be used, but right now it is probably a little expensive. So the question is, can we bring down the cost?” The next step, Prof Logan explained, was to develop larger-scale cells: “Then it will easier to evaluate the costs and investment needed to use the technology. The authors acknowledged that hydrogen had “significant potential as an efficient energy carrier”, but it had been dogged with high production costs and environmental concerns, because it is most often produced using fossil fuels.

Prof Logan observed: “We use hydrogen for many, many things. It is used in making [petrol], it is used in foods etc. Whether we use it in transportation… remains to be seen.” But, the authors wrote that their findings offered hope for the future: “This unique type of integrated system has significant potential to treat wastewater and simultaneously produce [hydrogen] gas without any consumption of electrical grid energy.” Prof Logan added that a working example of a microbial fuel cell was currently on display at London’s Science Museum, as part of the Water Wars exhibition.

Bacterial hydrolysis cell with reverse electrodialysis stack

‘Inexhaustible’ source of hydrogen may be unlocked by salt water / September 19, 2011

A grain of salt or two may be all that microbial electrolysis cells need to produce hydrogen from wastewater or organic byproducts, without adding carbon dioxide to the atmosphere or using grid electricity, according to Penn State engineers. “This system could produce hydrogen anyplace that there is wastewater near sea water,” said Bruce E. Logan, Kappe Professor of Environmental Engineering. “It uses no grid electricity and is completely carbon neutral. It is an inexhaustible source of energy.” Microbial electrolysis cells that produce hydrogen are the basis of this recent work, but previously, to produce hydrogen, the fuel cells required some electrical input. Now, Logan, working with postdoctoral fellow Younggy Kim, is using the difference between river water and seawater to add the extra energy needed to produce hydrogen. Their results, published in the Sept. 19 issue of the Proceedings of the National Academy of Sciences, “show that pure hydrogen gas can efficiently be produced from virtually limitless supplies of seawater and river water and biodegradable organic matter.”

Logan’s cells were between 58 and 64 percent efficient and produced between 0.8 to 1.6 cubic meters of hydrogen for every cubic meter of liquid through the cell each day. The researchers estimated that only about 1 percent of the energy produced in the cell was needed to pump water through the system. The key to these microbial electrolysis cells is reverse-electrodialysis or RED that extracts energy from the ionic differences between salt water and fresh water. A RED stack consists of alternating ion exchange membranes — positive and negative — with each RED contributing additively to the electrical output. “People have proposed making electricity out of RED stacks,” said Logan. “But you need so many membrane pairs and are trying to drive an unfavorable reaction.” For RED technology to hydrolyze water — split it into hydrogen and oxygen — requires 1.8 volts, which would in practice require about 25 pairs of membranes and increase pumping resistance. However, combining RED technology with exoelectrogenic bacteria — bacteria that consume organic material and produce an electric current — reduced the number of RED stacks to five membrane pairs.

Previous work with microbial electrolysis cells showed that they could, by themselves, produce about 0.3 volts of electricity, but not the 0.414 volts needed to generate hydrogen in these fuel cells. Adding less than 0.2 volts of outside electricity released the hydrogen. Now, by incorporating 11 membranes — five membrane pairs that produce about 0.5 volts — the cells produce hydrogen. “The added voltage that we need is a lot less than the 1.8 volts necessary to hydrolyze water,” said Logan. “Biodegradable liquids and cellulose waste are abundant and with no energy in and hydrogen out we can get rid of wastewater and by-products. This could be an inexhaustible source of energy.” Logan and Kim’s research used platinum as a catalyst on the cathode, but subsequent experimentation showed that a non-precious metal catalyst, molybdenum sulfide, had 51 percent energy efficiency.

Bruce Logan
email : blogan [at] psu [dot] edu

Batteries That Run On (And Clean) Used Toilet Water
by Ariel Schwartz / Aug 22, 2011

Humans should have a little more respect for dirty toilet water. In recent years, wastewater has become something of a commodity, with nuclear plants paying for treated wastewater to run their facilities, cities relying on so-called “toilet to tap” technology, and breweries turning wastewater into biogas that can be used to power their facilities. Soon enough, wastewater-powered batteries may even keep the lights on in your house or, at the very least, in the industrial plants that clean the wastewater.

Environmental engineer Bruce Logan is developing microbial fuel cells that rely on wastewater bacteria’s desire to munch on organic waste. When these bacteria eat the waste, electrons are released as a byproduct–and Logan’s fuel cell collects those electrons on carbon bristles, where they can move through a circuit and power everything from light bulbs to ceiling fans. Logan’s microbial fuel cells can produce both electrical power and hydrogen, meaning the cells could one day be used to juice up hydrogen-powered vehicles.

Logan’s fuel cells aren’t overly expensive. “In the early reactors, we used very expensive graphite rods and expensive polymers and precious metals like platinum. And we’ve now reached the point where we don’t have to use any precious metals,” he explained to the National Science Foundation. Microbial fuel cells still don’t produce enough power to be useful in our daily lives, but that may change soon–Logan estimates that the fuel cells will be ready to go in the next five to 10 years, at which point they could power entire wastewater treatment plants and still generate enough electricity to power neighboring towns. There may also be ones that use–and in the process-desalinate–salt water, using just the energy from the bacteria. And if the microbial fuel cells don’t work out, there’s another option: Chinese researchers have developed a photocatalytic fuel cell that uses light (as opposed to microbial cells) to clean wastewater and generate power. That technology is also far from commercialization, but in a few years, filthy water will power its own cleaning facilities one way or another.